2018 in paleobotany

From Wikipedia, the free encyclopedia
List of years in paleobotany
In paleontology
2015
2016
2017
2018
2019
2020
2021
In arthropod paleontology
2015
2016
2017
2018
2019
2020
2021
In paleoentomology
2015
2016
2017
2018
2019
2020
2021
In paleomalacology
2015
2016
2017
2018
2019
2020
2021
In reptile paleontology
2015
2016
2017
2018
2019
2020
2021
In archosaur paleontology
2015
2016
2017
2018
2019
2020
2021
In mammal paleontology
2015
2016
2017
2018
2019
2020
2021
In paleoichthyology
2015
2016
2017
2018
2019
2020
2021

This article records new taxa of plants that are scheduled to be described during the year 2018, as well as other significant discoveries and events related to paleobotany that occurred in the year 2018.

Flowering plants[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Alloberberis axelrodii[1]

Sp. nov

Valid

Doweld

Miocene

 United States
( Nevada)

A member of the family Berberidaceae; a replacement name for the previously invalidly published Mahonia sinuata Axelrod (1985), lacking holotype designation when published.

Alloberberis caeruleomontana[1]

Nom. nov

Valid

Doweld

Miocene

 United States
( Oregon)

A member of the family Berberidaceae; a replacement name for Ilex sinuata Chaney & Axelrod (1959).

Anacolosidites eosenonicus[2]

Sp. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

A pollen taxon, possibly a member of the family Loranthaceae.

Aniba caucasica[3]

Nom. nov

Valid

Doweld

Pliocene

Abkhazia

A species of Aniba; a replacement name for Aniba longifolia Kolakovsky & Schakryl (1958).

Anisodromum upchurchii[4]

Sp. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas)

A rosid described on the basis of fossil leaves.

Annona nepalensis[5]

Sp. nov

Valid

Prasad et al.

Miocene

Churia Formation

   Nepal

A species of Annona.

Araliaephyllum popovii[6]

Sp. nov

Valid

Golovneva

Early Cretaceous (Albian)

 Russia

A member of Laurales described on the basis of fossil leaves.

Archeampelos betulifolia[7]

Sp. nov

Valid

Moiseeva, Kodrul & Herman

Paleocene

Zeya–Bureya Basin

 Russia

A flowering plant described on the basis of fossil leaves, similar to leaves of members of the family Betulaceae.

Austrovideira[8]

Gen. et sp. nov

Valid

Rozefelds & Pace

Early Oligocene

 Australia

A member of Vitaceae. Genus includes new species A. dettmannae.

Berberis miopannonica[1]

Nom. nov

Valid

Doweld

Miocene

 Romania

A species of Berberis; a replacement name for Berberis lanceolata Givulescu (1985).

Berberis notata[1]

Nom. nov

Valid

Doweld

Miocene

 Austria

A species of Berberis; a replacement name for Ilex ambigua Unger (1847) and Berberis ambigua Kovar-Eder & Kvaček (2004).

Berryoxylon[9]

Gen. et sp. nov

Valid

Awasthi, Mehrotra & Shukla

Late Miocene–early Pliocene

Cuddalore Sandstone Formation

 India

A fossil wood showing affinities with members of the genus Berrya. Genus includes new species B. cuddalorensis.

Bignonioxylon[10]

Gen. et sp. nov

Valid

Moya & Brea

Late Pleistocene

Arroyo Feliciano Formation

 Argentina

A member of Bignoniaceae described on the basis of fossil wood. Genus includes new species B. americanum.

Burretiodendron guangxiensis[11]

Sp. nov

Valid

Dong & Sun in Dong et al.

Oligocene

Ningming Formation

 China

A species of Burretiodendron.

Buxus pliosinica[12]

Sp. nov

Valid

Huang, Su & Zhou

Late Pliocene

Sanying Formation

 China

A species of Buxus.

Canarium guangxiensis[13]

Sp. nov

Valid

Han & Manchester in Han et al.

Late Oligocene to late Miocene

Erzitang Formation
Foluo Formation
Yongning Formation

 China

A species of Canarium

Carlquistoxylon australe[14]

Sp. nov

Valid

Pujana et al.

Early Cretaceous (late Albian)

Cerro Barcino Formation

 Argentina

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil wood.

Castanopsis guangxiensis[15]

Sp. nov

Valid

Huang et al.

Late Oligocene

Yongning Formation

 China

A species of Castanopsis.

Castanopsis nanningensis[15]

Sp. nov

Valid

Huang et al.

Late Oligocene

Yongning Formation

 China

A species of Castanopsis.

Chenocybus[16]

Gen. et sp. nov

Valid

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement. Genus includes new species C. allodapus.

Chisochetonoxylon vastanensis[17]

Sp. nov

Valid

Shukla & Mehrota

Early Eocene

Cambay Shale Formation

 India

A member of the family Meliaceae described on the basis of fossil wood.

Cladium transdnestrovicum[18]

Nom. nov

Valid

Doweld

Miocene (Serravallian)

Transnistria

A species of Cladium; a replacement name for Cladium crassum Negru (1972), preoccupied by extant C. crassum (Thwaites) Kükenthal.

Clerodendrum sarmatiacum[3]

Nom. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species of Clerodendrum; a replacement name for Clerodendrum ovalifolium Baikovskaja in Kryshtofovich & Baikovskaja (1965).

Cobbania pharao[19]

Sp. nov

Valid

Coiffard & Mohr

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A member of the family Araceae belonging or related to the subfamily Aroideae.

Concavistylon[20]

Gen. et 2 sp. nov

Valid

Manchester, Pigg & Devore

Early Eocene to Middle Miocene

Little Butte Volcanic Series

 United States( Oregon)

A Trochodendraceae genus. Type species C. kvacekii Manchester, Pigg & Devore (2018) from Oregon
C. wehrii Manchester et al. (2018) from Washington state and British Columbia was originally described as a second species of this genus,[21] but subsequently it was transferred to the separate genus Paraconcavistylon.[22]

Craspedodromophyllum boguchanicum[7]

Sp. nov

Valid

Moiseeva, Kodrul & Herman

Paleocene

Zeya–Bureya Basin

 Russia

A member of the family Betulaceae.

Cretaceoxylon[23]

Gen. et sp. nov

Valid

Pujana in Pujana et al.

Late Cretaceous (Campanian)

Santa Marta Formation

Antarctica
(James Ross Island)

A eudicot of uncertain phylogenetic placement, described on the basis of fossil wood. Genus includes new species C. heteropunctatum.

Cryptocaryoxylon lemnium[24]

Sp. nov

Valid

Mantzouka

Early Miocene

 Greece

A member of the family Lauraceae.

Cryptocaryoxylon lesbium[24]

Sp. nov

Valid

Mantzouka

Early Miocene

 Greece

A member of the family Lauraceae.

Cussoniophyllum[25]

Nom. nov

Valid

Doweld

Late Cretaceous (Cenomanian)

 Czech Republic

A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly published Cussoniphyllum Velenovský (1889). Genus includes "Cussonia" partita Velenovský (1882).

Cyperus maii[18]

Nom. nov

Valid

Doweld

Miocene

 Germany

A species of Cyperus; a replacement name for Dichostylis macrocarpa Mai (1987).

Cyperus waltheri[18]

Nom. nov

Valid

Doweld

Miocene

 Germany

A species of Cyperus; a replacement name for Dichostylis minor Mai in Mai & Walther (1991).

Dakotanthus[26]

Gen. et comb. nov

Valid

Manchester et al.

Cretaceous (late Albian to Cenomanian)

Dakota Formation
Woodbine Formation

 United States
( Kansas
 Nebraska
 Texas)

An early eudicot; a new genus for "Carpites" cordiformis Lesquereux (1892).

Dalbergioxylon biseriatensis[27]

Sp. nov

Valid

Cheng et al.

Pliocene

Yuanmou Basin

 China

A member of the family Fabaceae described on the basis of fossil wood.

Diaphoranthus[16]

Gen. et sp. nov

Junior homonym

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement. Genus includes new species D. burmensis. The generic name is preoccupied by Diaphoranthus Meyen (1834); Poinar (2019) coined a replacement name Exalloanthum.[28]

Dicotylophyllum skogii[4]

Sp. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves.

Dioscorites palauensis[29]

Sp. nov

Valid

Guzmán-Vázquez, Calvillo-Canadell & Sánchez-Beristain

Late Cretaceous

Olmos Formation

 Mexico

A member of the family Dioscoreaceae.

Diplosophyllum[25]

Nom. nov

Valid

Doweld

Late Cretaceous (Cenomanian)

 Czech Republic
 Germany

A flowering plant described on the basis of fossil leaves; a replacement name for the preoccupied Diplophyllum Velenovský & Viniklář (1929). Genus includes "Inga" cottae Ettingshausen (1867), "Diplophyllum" cretaceum Velenovský & Viniklář (1929), "Hymenaea" elongata Velenovský (1884), "Hymenaea" inaequalis Velenovský (1884) and "Hymenaea" primigenia de Saporta in Velenovský (1884).

Dipterocarpuspollenites cretacea[30]

Sp. nov

Valid

Prasad et al.

Late Cretaceous (Maastrichtian)

 India

A pollen taxon belonging to the family Dipterocarpaceae.

Donlesia cheyennensis[31]

Sp. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Cheyenne Sandstone

 United States
( Kansas)

A member of the family Ceratophyllaceae.

Ebenoxylon cuddalorensis[9]

Sp. nov

Valid

Awasthi, Mehrotra & Shukla

Late Miocene–early Pliocene

Cuddalore Sandstone Formation

 India

A fossil wood showing affinities with members of the family Ebenaceae.

Edencarpa[32]

Gen. et sp. nov

Valid

Atkinson, Stockey & Rothwell

Late Cretaceous (early Coniacian)

 Canada
( British Columbia)

A member of Cornales. Genus includes new species E. grandis.

Endobeuthos[33]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement, possibly a relative of members of the family Dilleniaceae. Genus includes new species E. paleosum.

Eucalyptoxylon cuddalorensis[9]

Sp. nov

Valid

Awasthi, Mehrotra & Shukla

Late Miocene–early Pliocene

Cuddalore Sandstone Formation

 India

A fossil wood showing affinities with members of the genus Eucalyptus.

Euphorbia pontiana[3]

Nom. nov

Valid

Doweld

Miocene

 Ukraine

A species of Euphorbia; a replacement name for Euphorbia cylindrica Negru (1979).

Eydeia vancouverensis[32]

Sp. nov

Valid

Atkinson, Stockey & Rothwell

Late Cretaceous (early Coniacian)

 Canada
( British Columbia)

A member of Cornales.

Ficophyllum angustifolium[34]

Nom. nov

Valid

Doweld

Late Cretaceous (Campanian)

 Germany

A replacement name for Ficus angustifolia Hosius (1869).

Ficophyllum antiquum[34]

Nom. nov

Valid

Doweld

Late Cretaceous (Campanian)

 Germany

A replacement name for Ficus crassinervis Hosius (1869).

Ficophyllum hosii[34]

Nom. nov

Valid

Doweld

Late Cretaceous (Santonian)

 Germany

A replacement name for Ficus laurifolia Hosius & Marck (1880).

Ficophyllum magnolioides[34]

Nom. nov

Valid

Doweld

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas)

A replacement name for Ficus magnoliifolia Lesquereux (1883).

Ficophyllum marckii[34]

Nom. nov

Valid

Doweld

Late Cretaceous (Campanian)

 Germany

A replacement name for Ficus elongata Hosius (1869).

Ficus aenigmatica[34]

Nom. nov

Valid

Doweld

Eocene

Wilcox Formation

 United States
( Mississippi)

A species of Ficus; a replacement name for Ficus schimperi Lesquereux (1868).

Ficus microtrivia[35]

Sp. nov

Valid

Huang & Zhou in Huang et al.

Miocene

Wenshan Basin

 China

A species of Ficus.

Ficus myrtoides[34]

Nom. nov

Valid

Doweld

Eocene

 United States
( Mississippi)

A species of Ficus; a replacement name for Ficus myrtifolius Berry (1916).

Ficus slovenica[34]

Nom. nov

Valid

Doweld

Eocene

 Slovenia

A species of Ficus; a replacement name for Ficus pilosa Ettingshausen (1872).

Ficus venustoides[34]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

A species of Ficus; a replacement name for Ficus venusta Saporta (1861).

Ficus venustula[34]

Nom. nov

Valid

Doweld

Eocene

 Croatia

A species of Ficus; a replacement name for Malpighiastrum venustum Unger (1860).

Ficus yellowstonica[34]

Nom. nov

Valid

Doweld

Paleocene

 United States
( Wyoming)

A species of Ficus; a replacement name for Ficus densifolia Knowlton (1899).

Fissistigma nanningense[36]

Sp. nov

Valid

Li et al.

Oligocene

Yongning Formation

 China

A species of Fissistigma.

Gardenia eocenicus[37]

Sp. nov

Valid

Shukla, Mehrotra & Nawaz Ali

Early Eocene

Palana Formation

 India

A species of Gardenia.

Gastonispermum[38]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

 Portugal

A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species G. portugallicum.

Gleditsioxylon jiangsuensis[39]

Sp. nov

Valid

Cheng et al.

Early Miocene

 China

A member of Leguminosae described on the basis of fossil wood.

Gmelina siwalika[40]

Sp. nov

Valid

Khan, Bera & Bera in Khan et al.'

Late Pliocene or early Pleistocene

Kimin Formation

 India

A species of Gmelina.

Goniothalamus miocenicus[5]

Sp. nov

Valid

Prasad et al.

Late Miocene

Middle Churia Formation

   Nepal

A species of Goniothalamus.

Gouania miocenica[41]

Sp. nov

Valid

Hernandez-Hernández & Castañeda-Posadas

Early Miocene

Mexican amber

 Mexico

A species of Gouania.

Hederago[25]

Nom. nov

Valid

Doweld

Late Cretaceous (Cenomanian)

 Czech Republic

A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly published Hederophyllum Velenovský (1889). Genus includes "Hedera" credneriifolia Velenovský (1882) and "Hedera" primordialis de Saporta (1879).

Hemitrapa alpina[42]

Sp. nov

Valid

Su & Zhou in Su et al.

Early Oligocene

 China

A member of the family Lythraceae. Originally described as a species of Hemitrapa, but subsequently transferred to the genus Primotrapa by Li et al. (2020).[43]

Hibiscus sarmatiacus[3]

Sp. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species of Hibiscus; a replacement name for the invalidly named Hibiscus splendens Baikovskaja.

Holigarna palaeograhamii[37]

Sp. nov

Valid

Shukla, Mehrotra & Nawaz Ali

Early Eocene

Palana Formation

 India

A species of Holigarna.

Hopenium tertiarum[9]

Sp. nov

Valid

Awasthi, Mehrotra & Shukla

Late Miocene–early Pliocene

Cuddalore Sandstone Formation

 India

A fossil wood showing affinities with members of the genus Hopea.

Ipomoea meghalayensis[44]

Sp. nov

Valid

Srivastava, Mehrotra & Dilcher

Paleocene (Thanetian)

 India

A species of Ipomoea.

Kirchheimeria[45]

Gen. et comb. nov

Valid

Kowalski in Kowalski & Worobiec

Oligocene to Pliocene

 Denmark
 Germany
 Poland
 Russia
( Kaliningrad Oblast)

A member of Ericaceae of uncertain phylogenetic placement. Genus includes "Elaeocarpus" globulus Menzel (1906).

Kvacekispermum[46]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

Figueira da Foz Formation

 Portugal

A member of the family Chloranthaceae. Genus includes new species K. rugosum.

Lachnociona camptostylus[47]

Sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement, most similar to members of the families Brunelliaceae and Cunoniaceae.

Lacinipetalum[48]

Gen. et sp. nov

Valid

Jud et al.

Paleocene (early Danian)

Upper Salamanca Formation

 Argentina

A member of Cunoniaceae. Genus includes new species L. spectabilum.

Laurinoxylon rennerae[49]

Sp. nov

Valid

Estrada-Ruiz et al.

Late Cretaceous (late Campanian)

McRae Formation

 United States
( New Mexico)

A member of Lauraceae described on the basis of fossil wood.

Laurus ficoides[34]

Nom. nov

Valid

Doweld

Eocene

 France

A species of Laurus; a replacement name for Ficus reticulata Saporta (1863).

Lefipania[50]

Gen. et sp. nov

Valid

Martínez, Gandolfo & Cúneo

Late Cretaceous (Maastrichtian)

Lefipán Formation

 Argentina

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves. Genus includes new species L. padillae.

Leguminocarpum oguruiensis[51]

Sp. nov

Valid

Yabe & Nakagawa

Miocene

Shimo Formation

 Japan

A fossil legume fruit.

Ligustrum miovulgare[3]

Sp. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species of Ligustrum; a replacement name for the invalidly named Ligustrum vulgare var. fossilis Baikovskaja.

Lijinganthus[52]

Gen. et sp. nov

Valid

Liu et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A member of Pentapetalae of uncertain phylogenetic placement. Genus includes new species L. revoluta.

Limnobiophyllum stockeyana[19]

Sp. nov

Valid

Coiffard & Mohr

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A member of the family Araceae belonging to the subfamily Lemnoideae.

Liquidambar fujianensis[53]

Sp. nov

Valid

Dong et al.

Middle Miocene

Fotan Group

 China

A species of Liquidambar.

Lithocarpoxylon microporosum[27]

Sp. nov

Valid

Cheng et al.

Pliocene

Yuanmou Basin

 China

A member of the family Fagaceae described on the basis of fossil wood.

Lithocarpoxylon nanningensis[15]

Sp. nov

Valid

Huang et al.

Late Oligocene

Yongning Formation

 China

A member of Fagaceae described on the basis of fossil wood.

Litseoxylon[54]

Gen. et sp. nov

Valid

Huang et al.

Late Oligocene

Yongning Formation

 China

A member of the family Lauraceae. Genus includes new species L. nanningensis.

Luckowcarpa[55]

Gen. et sp. nov

Valid

Martínez

Late Eocene

Esmeraldas Formation

 Colombia

A member of Fabaceae belonging to the group Dalbergieae. Genus includes new species L. gunnii.

Lusitanispermum[38]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

 Portugal

A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species L. choffatii.

Lycopus europleistocenicus[3]

Sp. nov

Valid

Doweld

Pleistocene

 Belarus

A species of Lycopus; a replacement name for the invalidly named Lycopus intermedius Dorofeev (1963).

Malus antiqua[3]

Nom. nov

Valid

Doweld

Miocene

 Romania

A species of Malus; a replacement name for Malus pulcherrima Givulescu (1980).

Maytenoxylon[56]

Gen. et sp. nov

Valid

Franco

Late Cenozoic

Ituzaingó Formation

 Argentina

A member of Celastraceae described on the basis of fossil wood. Genus includes new species M. perforatum.

Mcraeoxylon[49]

Gen. et sp. nov

Valid

Estrada-Ruiz et al.

Late Cretaceous (late Campanian)

McRae Formation

 United States
( New Mexico)

A flowering plant described on the basis of fossil wood, with a suite of features seen in several families of Malpighiales, Myrtales and Oxalidales. Genus includes new species M. waddellii.

Meliosma antiqua[3]

Nom. nov

Valid

Doweld

Oligocene

 United Kingdom

A species of Meliosma; a replacement name for Calvarinus reticulatus Reid & Reid (1910).

Menispermites calderensis[57]

Sp. nov

Valid

Jud et al.

Eocene (Ypresian)

Huitrera Formation

 Argentina

A member of the family Menispermaceae described on the basis of fossil leaves.

Menispermites olmosensis[29]

Sp. nov

Valid

Guzmán-Vázquez, Calvillo-Canadell & Sánchez-Beristain

Late Cretaceous

Olmos Formation

 Mexico

A member of the family Menispermaceae.

Nelumbo jiayinensis[58]

Sp. nov

Valid

Liang et al.

Late Cretaceous (Santonian)

Yong'ancun Formation

 China

A species of Nelumbo.

Neofructus[59]

Gen. et sp. nov

Valid

Liu & Wang

Early Cretaceous (BarremianAptian)

Yixian Formation

 China

An early flowering plant. Genus includes new species N. lingyuanensis.

Nitaspermum[60]

Gen. et 5 sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 United States
( Maryland
 Virginia)

A fossil seed with affinities to Austrobaileyales and Nymphaeales. Genus includes new species N. taylorii, N. hopewellense, N. crassum, N. virginiense and N. marylandense.

Nyssa givulescui[3]

Nom. nov

Valid

Doweld

Oligocene

 Romania

A tupelo; a replacement name for Nyssa maxima Givulescu, Petrescu & Barbu (1997).

Obamacarpa[32]

Gen. et sp. nov

Valid

Atkinson, Stockey & Rothwell

Late Cretaceous (early Coniacian)

 Canada
( British Columbia)

A member of Cornales. Genus includes new species O. edenensis.

Ocotea undulatoides[3]

Nom. nov

Valid

Doweld

Miocene

 Germany

A species of Ocotea; a replacement name for Laurophyllum undulatum Weyland & Kilpper (1963).

Paisia[61]

Gen. et sp. nov

Valid

Friis, Mendes & Pedersen

Early Cretaceous (late Barremian–early Albian)

Almargem Formation

 Portugal

An early eudicot. Genus includes new species P. pantoporata.

Palaeocarya huashanensis[62]

Sp. nov

Valid

Chen et al.

Oligocene

Ningming Formation

 China

A member of the family Juglandaceae.

Paleoallium[63]

Gen. et sp. nov

Valid

Pigg, Bryan & DeVore

Eocene
Ypresian

Okanagan Highlands
Klondike Mountain Formation

 United States
 Washington

A monocot similar to members of Amaryllidaceae. Genus includes new species P. billgenseli.

Paleoallium billgenseli

Paliurus hirsuta[64]

Sp. nov

Valid

Dong & Sun in Dong et al.

Middle Miocene

Fotan Group

 China

A species of Paliurus.

Palmoxylon araneus[65]

Sp. nov

Valid

Nour-El-Deen, El-Saadawi & Thomas

Oligocene (Rupelian)

Jebel Qatrani Formation

 Egypt

Palmoxylon elsaadawii[65]

Sp. nov

Valid

Nour-El-Deen & Thomas in Nour-El-Deen, Thomas & El-Saadawi

Oligocene (Rupelian)

Jebel Qatrani Formation

 Egypt

Palmoxylon qatraniense[65]

Sp. nov

Valid

Nour-El-Deen, El-Saadawi & Thomas

Oligocene (Rupelian)

Jebel Qatrani Formation

 Egypt

Paraalbizioxylon sinica[27]

Sp. nov

Valid

Cheng et al.

Pliocene

Yuanmou Basin

 China

A member of the family Fabaceae described on the basis of fossil wood.

Paraalbizioxylon yunnanensis[27]

Sp. nov

Valid

Cheng et al.

Pliocene

Yuanmou Basin

 China

A member of the family Fabaceae described on the basis of fossil wood.

Parahancornioxylon[66]

Gen. et comb. nov

Valid

Moya, Brea & Lutz

Pliocene

Andalhualá Formation

 Argentina

A member of Apocynaceae described on the basis of fossil wood; a new genus for "Menendoxylon" piptadiensis Lutz (1987).

Paraphyllanthoxylon antarcticum[23]

Sp. nov

Valid

Pujana in Pujana et al.

Late Cretaceous (Campanian)

Santa Marta Formation

Antarctica
(James Ross Island)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil wood.

Pazlia[38]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

 Portugal

A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species P. hilaris.

Pazliopsis[38]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

Almargem Formation

 Portugal

A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species P. reyi.

Pentacentron[21]

Gen. et sp. nov

Valid

Manchester et al.

Eocene
Ypresian

Okanagan Highlands
Klondike Mountain Formation

 United States
 Washington

A member of the family Trochodendraceae. The type species is P. sternhartae.

Pentacentron sternhartae

Photinia sarmatiaca[3]

Sp. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species of Photinia; a replacement name for the invalidly named Photinia acuminata Baikovskaja in Kryshtofovich & Baikovskaja (1965).

Pistacia miolentiscus[3]

Nom. nov

Valid

Doweld

Miocene

 Hungary

A species of Pistacia; a replacement name for Pistacia lentiscoides Andreánszky & Cziffery in Andreánszky (1959).

Pistacia pliolentiscus[3]

Nom. nov

Valid

Doweld

Pliocene

 Netherlands

A species of Pistacia; a replacement name for Pistacia acuminata Reid & Reid (1915).

Pistacioxylon ufuki[67]

Sp. nov

Valid

Akkemik & Poole in Akkemik et al.

Early Miocene

Haymana Basin

 Turkey

A Pistacia-like plant described on the basis of fossil wood.

Polyalthioxylon arunachalensis[68]

Sp. nov

Valid

Srivastava, Mehrotra & Srikarni

Late Pliocene–Early Pleistocene

Kimin Formation

 India

A member of the family Annonaceae described on the basis of fossil wood.

Priscophyllum[25]

Nom. nov

Valid

Doweld

Late Cretaceous (Cenomanian)

 Czech Republic

A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly published Grevilleophyllum Velenovský (1889). Genus includes "Grevillea" constans Velenovský (1883).

Prunus hirsutipetala[69]

Sp. nov

Valid

Sokoloff, Remizowa & Nuraliev in Sokoloff et al.

Eocene

Rovno amber

 Ukraine

A species of Prunus.

Pseudoanacardium[70]

Gen. et comb. nov

Valid

Manchester & Balmaki

Early Oligocene

 Peru

A fossil fruit of uncertain phylogenetic placement; a new genus for "Anacardium" peruvianum Berry (1924).

Pseudolimnobiophyllum[19]

Gen. et sp. nov

Valid

Coiffard & Mohr

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A member of the family Araceae belonging to the subfamily Lemnoideae. Genus includes new species P. simile.

Pseudowinterapollis agatdalensis[71]

Sp. nov

Valid

Grímsson & Zetter in Grímsson et al.

Paleocene (Danian)

Agatdal Formation

 Greenland

A pollen taxon, a member of the family Winteraceae.

Pterocaryoxylon huxii[27]

Sp. nov

Valid

Cheng et al.

Pliocene

Yuanmou Basin

 China

A member of the family Juglandaceae described on the basis of fossil wood.

Pterygota eocenica[37]

Sp. nov

Valid

Shukla, Mehrotra & Nawaz Ali

Early Eocene

Palana Formation

 India

A species of Pterygota.

Ranunculus eoreptans[3]

Nom. nov

Valid

Doweld

Pliocene

 Belarus

A species of Ranunculus; a replacement name for Ranunculus pusillus Dorofeev (1987).

Retiacolpites pigafettaensis[30]

Sp. nov

Valid

Prasad et al.

Late Cretaceous (Maastrichtian)

 India

A pollen taxon resembling pollen of members of the genus Pigafetta.

Reyispermum[38]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

Figueira da Foz Formation

 Portugal

A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species R. parvum.

Rhododendron maii[3]

Nom. nov

Valid

Doweld

Pliocene

 Germany

A species of Rhododendron; a replacement name for Rhododendron germanicum Mai & Walther (1988).

Rightcania[46]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 United States
( Virginia)

A member of the family Chloranthaceae. Genus includes new species R. kvacekii.

Ripogonum palaeozeylandiae[72]

Sp. nov

Valid

Conran, Kennedy & Bannister

Early Eocene

 New Zealand

A species of Ripogonum.

Ruprechtioxylon breae[56]

Sp. nov

Valid

Franco

Late Cenozoic

Ituzaingó Formation

 Argentina

A member of Polygonaceae described on the basis of fossil wood.

Ryparosa churiaensis[5]

Sp. nov

Valid

Prasad et al.

Miocene

Churia Formation

   Nepal

A species of Ryparosa.

Salacia lombardii[73]

Sp. nov

Valid

Hernández-Damián, Gómez-Acevedo & Cevallos-Ferriz

Miocene

 Mexico

A species of Salacia.

Sambucus sarmatiaca[3]

Sp. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species of Sambucus; a replacement name for the invalidly named Sambucus palaeoracemosa Baikovskaja in Kryshtofovich & Baikovskaja (1965).

Sapindopsis retallackii[4]

Sp. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas)

A member or a relative of the family Platanaceae described on the basis of fossil leaves.

Schoenoplectiella isolepioides[18]

Sp. nov

Valid

Doweld

Pliocene

 Germany

A member of the family Cyperaceae; a replacement name for the invalidly named Scirpus (Schoenoplectus) isolepioides Mai & Walther (1988).

Scirpus novorossicus[18]

Nom. nov

Valid

Doweld

Miocene (Tortonian)

 Ukraine

A species of Scirpus; a replacement name for Scirpus leptocarpus Negru (1986), preoccupied by extant Scirpus leptocarpus Mueller (1855).

Setitheca[74]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A member of Laurales of uncertain phylogenetic placement. Genus includes new species S. lativalva.

Silutanispermum[38]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

 Portugal

A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species S. kvacekiorum.

Sloanea siwalika[75]

Sp. nov

Valid

More et al.

Pliocene

Geabdat Sandstone Formation

 India

A species of Sloanea.

Soepadmoa[76]

Gen. et sp. nov

Valid

Nixon, Crepet, Gandolfo & Grimaldi

Late Cretaceous (Turonian)

Raritan Formation
(New Jersey amber)

 United States
( New Jersey)

A member of Fagales of uncertain phylogenetic placement. Genus includes new species S. cupulata.

Staphylea spinosa[77]

Sp. nov

Valid

Huang & Momohara in Huang, Momohara & Wang

Pleistocene

Shobudani Formation

 Japan

A species of Staphylea.

Stafylioxylon[8]

Gen. et comb. nov

Valid

Rozefelds & Pace

Eocene

London Clay

 United Kingdom

A member of Vitaceae; a new genus for "Vitaceoxylon" ramunculiformis Poole & Wilkinson (2000).

Stellatia[2]

Gen. et comb. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

A phytoclast, possibly a member of Nymphaeaceae. Genus includes S. furcata (Duarte & Arai, 2010).

Stephania auriformis[78]

Comb nov

valid

(Hollick) Manchester & Han

Paleocene/Eocene

"King Salmon Lake flora"

 USA
 Alaska

A moonseed species.
Moved from Diploclisia auriformis (1994)[79]

Stephania jacquesii[78]

Sp. nov

Valid

Han & Manchester in Han et al.

Late Eocene to late Oligocene

Clarno Formation
Yongning Formation

 China
 United States
( Oregon)

A species of Stephania.

Stephania psittaca[57]

Sp. nov

Valid

Jud & Gandolfo in Jud et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A species of Stephania.

Stephania wilfii[78]

Sp. nov

Valid

Han & Manchester in Han et al.

Paleocene to Eocene

Green River Formation

 United States
( Wyoming)

A species of Stephania.

Sterculia acerina[3]

Nom. nov

Valid

Doweld

Eocene

 Czech Republic

A species of Sterculia; a replacement name for Acer crassinervium Ettingshausen (1869).

Symplocos hitchcockii[80]

Sp. nov

Valid

Tiffney, Manchester & Fritsch

Early Miocene

Brandon Lignite

 United States
( Vermont)

A species of Symplocos.

Syzygium christophelii[81]

Sp. nov

Valid

Tarran et al.

Early Miocene

 Australia

A species of Syzygium.

Syzygium gurhaensis[37]

Sp. nov

Valid

Shukla, Mehrotra & Nawaz Ali

Early Eocene

Palana Formation

 India

A species of Syzygium.

Tanispermum[82]

Gen. et 4 sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (early Aptian to early to middle Albian)

Potomac Group

 United States
( Maryland
 Virginia)

A flowering plant with affinities to Austrobaileyales or Nymphaeales. Genus includes new species T. hopewellense, T. marylandense, T. drewriense and T. antiquum.

Teuschestanthes[83]

Gen. et sp. nov

Valid

Crepet, Nixon & Weeks

Late Cretaceous (Turonian)

Lower Magothy Formation

 United States
( New Jersey)

A member of Ericales of uncertain phylogenetic placement. Genus includes new species T. squamata.

Trichomites[2]

Gen. et 3 sp. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

A phytoclast. Genus includes new species T. brevifurcatus (probably a member of Campanulaceae), T. duplihelicoidus (affinity unknown) and T. simplex (a dicotyledon of uncertain affinity).

Tricolpites joelcastroi[2]

Sp. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

A pollen taxon, an indeterminate dicotyledon.

Trochodendroides sittensis[84]

Sp. nov

Valid

Golovneva in Golovneva & Zolina

Early Cretaceous

 Russia

Taxon described on the basis of fossil leaves resembling leaves of members of the family Cercidiphyllaceae.

Trochodendron postnastae[20]

Sp. nov

Valid

Manchester, Pigg & Devore

Middle Miocene

Little Butte Volcanic Series

 United States
( Oregon)

A species of Trochodendron.

Trochodendron rosayi[20]

Sp. nov

Valid

Manchester, Pigg & Devore

Middle Miocene

Little Butte Volcanic Series

 United States
( Idaho
 Oregon)

A species of Trochodendron.

Turneroxylon[49]

Gen. et sp. nov

Valid

Estrada-Ruiz et al.

Late Cretaceous (late Campanian)

McRae Formation

 United States
( New Mexico)

A eudicot with similarities to members of Dilleniaceae, described on the basis of fossil wood. Genus includes new species T. newmexicoense.

Ulmus maguanensis[85]

Sp. nov

Valid

Zhang & Xing in Zhang et al.

Miocene

Huazhige Formation

 China

An elm.

Ulmus prelanceaefolia[85]

Sp. nov

Valid

Zhang & Xing in Zhang et al.

Miocene

Huazhige Formation

 China

An elm.

Ulmus priamurica[86]

Sp. nov

Valid

Blokhina & Bondarenko

Miocene

Sazanka Formation

 Russia
( Amur Oblast)

An elm.

Unona miocenica[5]

Sp. nov

Valid

Prasad et al.

Miocene

Churia Formation

   Nepal

A member of the family Annonaceae.

Viburnum pliolantana[3]

Nom. nov

Valid

Doweld

Pliocene

 Russia
( Bashkortostan)

A species of Viburnum; a replacement name for Viburnum lantanoides Dorofeev (1977).

Weinmannioxylon trichospermoides[23]

Sp. nov

Valid

Pujana in Pujana et al.

Late Cretaceous (Campanian)

Santa Marta Formation

Antarctica
(James Ross Island)

A member of Cunoniaceae described on the basis of fossil wood.

Wilkinsoniphyllum[57]

Gen. et sp. nov

Valid

Jud et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A member of the family Menispermaceae described on the basis of fossil leaves. Genus includes new species W. menispermoides.

Wingia[4]

Gen. et comb. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas
 Nebraska)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves. Genus includes "Dicotylophyllum" expansolobum Upchurch & Dilcher (1990).

Zanthoxylum pilari[3]

Nom. nov

Valid

Doweld

Miocene

 Croatia

A species of Zanthoxylum; a replacement name for Zanthoxylum affine Pilar (1883).

Zanthoxylum tethyca[3]

Nom. nov

Valid

Doweld

Eocene

 United Kingdom

A species of Zanthoxylum; a replacement name for Rutaspermum rugosum Chandler (1964).

Zelkovoxylon yesimae[67]

Sp. nov

Valid

Akkemik & Poole in Akkemik et al.

Early Miocene

Haymana Basin

 Turkey

A Zelkova-like plant described on the basis of fossil wood.

Zygogynum poratus[87]

Sp. nov

Valid

Liang & Zhou in Liang et al.

Middle Miocene

 China

A species of Zygogynum.

Pinales[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Agathis immortalis[88]

Sp. nov

Valid

Escapa et al.

Paleocene (Danian)

 Argentina

A species of Agathis.

Agathoxylon crasseradiatum[89]

Sp. nov

Valid

Lignier ex Philippe et al.

Early Cretaceous (late Aptian-Albian)

 France

A member of Araucariaceae described on the basis of fossil wood.

Agathoxylon holbavicum[90]

Sp. nov

Valid

Iamandei, Iamandei & Grădinaru

Early Jurassic

 Romania

Agathoxylon santacruzense[91]

Sp. nov

Valid

Kloster & Gnaedinger

Middle Jurassic

La Matilde Formation

 Argentina

Araucaria lefipanensis[92]

Sp. nov

Valid

Andruchow‐Colombo et al.

Late Cretaceous

Lefipán Formation

 Argentina

A species of Araucaria.

Atlanticoxylon ibiratinum[93]

Sp. nov

Valid

Faria et al.

Permian (Artinskian)

Irati Formation

 Brazil

A conifer described on the basis of fossil wood.

Brachyoxylon cristianicum[90]

Sp. nov

Valid

Iamandei, Iamandei & Grădinaru

Early Jurassic

 Romania

Brachyoxylon holbavicum[90]

Sp. nov

Valid

Iamandei, Iamandei & Grădinaru

Early Jurassic

 Romania

Brachyoxylon zhejiangense[94]

Sp. nov

Valid

Tian, Zhu & Wang in Tian et al.

Early Cretaceous

Guantou Formation

 China

A coniferous wood.

Chimaerostrobus[95]

Gen. et sp. nov

Valid

Atkinson et al.

Early Jurassic(Pliensbachian-Toarcian)

Mawson Formation

Antarctica

A conifer pollen cone. Genus includes new species C. minutus.

Cryptomeria yunnanensis[96]

Sp. nov

Valid

Ding & Zhou in Ding et al.

Oligocene (Rupelian)

Lühe Basin

 China

A member of Cupressaceae, a species of Cryptomeria.

Cunninghamia shangcunica[97]

Sp. nov

Valid

Kodrul et al.

Early Oligocene

Shangcun Formation

 China

A species of Cunninghamia.

Cyclusphaera annularis[98]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

A pollen taxon with affinities with the family Araucariaceae.

Cyclusphaera punnulosa[98]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

A pollen taxon with affinities with the family Araucariaceae.

Elatides laiyangensis[99]

Sp. nov

Valid

Jin & Sun in Jin et al.

Early Cretaceous

Laiyang Formation

 China

A conifer.

Hirandubia[100]

Gen. et sp. nov

Valid

Ghosh et al.

Early Cretaceous

Rajmahal Basin

 India

A member of Cupressaceae. Genus includes new species H. cupressoides.

Kirketapel salamanquensis[101]

Sp. nov

Valid

Andruchow-Colombo et al.

Paleocene (Danian)

Salamanca Formation

 Argentina

The oldest member of a scale-leaved clade of Podocarpaceae.

Marskea heeriana[102]

Sp. nov

Valid

Nosova & Kiritchkova

Middle Jurassic

Irkutsk Coal Basin

 Russia

Morinostrobus[103]

Gen. et sp. nov

Valid

Stockey et al.

Early Cretaceous (Valanginian)

 Canada
( British Columbia)

A member of Cupressaceae described on the basis of pollen cones. Genus includes new species M. holbergensis.

Pinus daflaensis[104]

Nom. nov

Valid

Khan & Bera

Miocene

Dafla Formation

 India

A pine; a replacement name for Pinus arunachalensis Khan & Bera (2017) (preoccupied by Pinus arunachalensis Srivastava, 2017).

Pinus enochii[105]

Sp. nov

Valid

Huerta Vergara & Cevallos-Ferriz

Late Cretaceous (late Campanian)

Lutita Packard Formation

 Mexico

A pine.

Pinus leiophylloides[106]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

A pine; a replacement name for Pinus pseudotaeda Saporta (1865).

Pinus microstrobus[106]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

A pine; a replacement name for Pinus microcarpa Saporta (1865).

Pinus notata[106]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

A pine; a replacement name for Pinus divaricata Saporta (1865).

Pinus pentaphylloides[106]

Nom. nov

Valid

Doweld

Late Cretaceous (Santonian)

 Japan

A pine; a replacement name for Pinus hokkaidoensis Stockey & Ueda (1986).

Pinus tetraphylloides[106]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

A pine; a replacement name for Pinus deflexa Saporta (1865).

Pinus uxui[105]

Sp. nov

Valid

Huerta Vergara & Cevallos-Ferriz

Late Cretaceous (late Campanian)

Lutita Packard Formation

 Mexico

A pine.

Platycladus preorientalis[107]

Sp. nov

Valid

He et al.

Early Miocene

 China

A species of Platycladus.

Podocarpospermum podocarpoides[100]

Sp. nov

Valid

Ghosh et al.

Early Cretaceous

Rajmahal Basin

 India

A member of Podocarpaceae.

Protocedroxylon zhalantunense[108]

Sp. nov

Valid

Zhang, Tian & Wang in Zhang et al.

Middle Jurassic

Wanbao Formation

 China

A member of the family Pinaceae.

Protocedroxylon zhangii[108]

Sp. nov

Valid

Zhang, Tian & Wang in Zhang et al.

Middle Jurassic

Wanbao Formation

 China

A member of the family Pinaceae.

Protophyllocladoxylon holbavicum[90]

Sp. nov

Valid

Iamandei, Iamandei & Grădinaru

Early Jurassic

 Romania

Pseudofrenelopsis salesii[109]

Sp. nov

Valid

Batista et al.

Early Cretaceous (Albian)

Romualdo Member

 Brazil

A member of Cheirolepidiaceae.

Rabagostrobus[110]

Gen. et sp. nov

Valid

Kvaček et al.

Early Cretaceous (Albian)

 Spain

An araucarian pollen cone. Genus includes new species R. hispanicus.

Sequoioxylon carneyvillense[111]

Sp. nov

Valid

Li, Jin & Manchester

Paleocene

Fort Union Formation

 United States
( Wyoming)

Fossil wood resembling Sequoia.

Sequoioxylon zhangii[112]

Sp. nov

Valid

Tian et al.

Late Cretaceous

 China

A member of Sequoioideae described on the basis of fossil wood.

Taxocladus czeremchoviensis[113]

Sp. nov

Valid

Frolov & Mashchuk

Early Jurassic

Czeremkhovskaya Formation

 Russia

Possibly a member of the family Taxaceae.

Yanliaoa daohugouensis[114]

Sp. nov

Valid

Tan et al.

Middle Jurassic

Daohugou Beds

 China

A member of Cupressaceae sensu lato.

Other seed plants[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Baiera telmensis[113]

Sp. nov

Valid

Frolov in Frolov & Mashchuk

Early Jurassic

Prisayanskaya Formation

 Russia

A member of Ginkgoales.

Calycosperma[115]

Gen. et sp. nov

Valid

Liu et al.

Late Devonian

Wutong Formation

 China

An early seed plant. Genus includes new species C. qii.

Carpolithes kurminensis[113]

Sp. nov

Valid

Frolov in Frolov & Mashchuk

Middle Jurassic

Taltsy Formation

 Russia

Seed of a gymnosperm of uncertain affinities.

Cordaites daviessensis[116]

Sp. nov

Valid

Šimůnek

Carboniferous (early Westphalian D)

Staunton Formation

 United States
( Indiana)

Cordaites kinneyensis[116]

Sp. nov

Valid

Šimůnek

Carboniferous (Stephanian B)

Atrasado Formation

 United States
( New Mexico)

Cordaites minshallensis[116]

Sp. nov

Valid

Šimůnek

Carboniferous (Bolsovian)

Brazil Formation

 United States
( Indiana)

Cordaites olneyensis[116]

Sp. nov

Valid

Šimůnek

Carboniferous (late Pennsylvanian)

Mattoon Formation

 United States
( Illinois)

Cycadolepis ferrugineus[117]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Jurassic (PliensbachianAalenian)

 Australia

A member of Bennettitales belonging to the family Williamsoniaceae.

Cycadopites grossus[98]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

A pollen taxon, similar to many of the modern cycad pollen types.

Czekanowskia ottenii[118]

Sp. nov

Valid

Kiritchkova, Kostina & Nosova

Jurassic

 Russia

Eamesia[119]

Gen. et sp. nov

Valid

Yang et al.

Early Cretaceous (Aptian)

Yixian Formation

 China

A member of Ephedraceae. Genus includes new species E. chinensis.

Eretmophyllum neimengguensis[120]

Sp. nov

Valid

Li et al.

Middle Jurassic

Yan’an Formation

 China

A member of Ginkgoales.

Eretmophyllum odintsovae[113]

Sp. nov

Valid

Frolov & Mashchuk

Middle Jurassic

Taltsy Formation

 Russia

A member of Ginkgoales.

Eretmophyllum olchaense[118]

Sp. nov

Valid

Kiritchkova, Kostina & Nosova

Jurassic

 Russia

Ginkgo cuneifolia[121]

Sp. nov

Valid

Tan, Dilcher, Wang & Sun in Sun et al.

Middle Jurassic

Jiulongshan Formation

 China

A species of Ginkgo.

Ginkgo daohugouensis[121]

Sp. nov

Valid

Tan, Dilcher, Wang & Sun in Sun et al.

Middle Jurassic

Jiulongshan Formation

 China

A species of Ginkgo.

Ginkgo glinkiensis[113]

Sp. nov

Valid

Frolov & Mashchuk

Early Jurassic

Czeremkhovskaya Formation

 Russia

Originally described as a species of Ginkgo, but subsequently transferred to the genus Ginkgoites.[122]

Ginkgo parvifolia[121]

Sp. nov

Valid

Tan, Dilcher, Wang & Sun in Sun et al.

Middle Jurassic

Jiulongshan Formation

 China

A species of Ginkgo.

Ginkgophyllum rhipidomorphum[123]

Sp. nov

Valid

Gomankov

Late Permian

 Russia

Hexianthus[124]

Gen. et sp. nov

Valid

Wang & Sun in Wang et al.

Early Permian

Taiyuan Formation

 China

A cone fossil belonging to the group Cordaitopsida and the family Cordaitaceae. Genus includes new species H. shenii.

Jugasporites vellicoites[125]

Sp. nov

Valid

Zavattieri, Gutiérrez & Ezpeleta

Permian (Lopingian)

La Veteada Formation

 Argentina

A member of Voltziales described on the basis of fossil pollen grains.

Nanjinganthus[126]

Gen. et sp. nov

Valid

Fu et al.

Early Jurassic

South Xiangshan Formation

 China

A seed plant of uncertain phylogenetic placement. Interpreted as an early fossil flower by Fu et al. (2018);[126] Coiro, Doyle & Hilton (2019) considered known specimens of this plant to be more similar to conifer cones.[127] Genus includes new species N. dendrostyla.

Nilssoniopteris crassiaxis[128]

Sp. nov

Valid

Zhao & Deng in Zhao et al.

Middle Jurassic

Xishanyao Formation

 China

A member of Bennettitales.

Nilssoniopteris hamiensis[128]

Sp. nov

Valid

Zhao & Deng in Zhao et al.

Middle Jurassic

Xishanyao Formation

 China

A member of Bennettitales.

Nilssoniopteris neimenguensis[129]

Nom. nov

Valid

Zhao & Deng in Zhao et al.

Early and Middle Jurassic

Hongqi Formation
Mentougou Formation

 China

A member of Bennettitales; a replacement name for Nilssoniopteris angustifolia Wang (1984), preoccupied by Nilssoniopteris angustifolia Doludenko and Svanidze (1969).

Nilssoniopteris shiveeovoensis[130]

Sp. nov

Valid

Herrera et al.

Early Cretaceous (AptianAlbian)

Khukhteeg Formation

 Mongolia

A member of Bennettitales.

Nilssoniopteris tomentosa[130]

Sp. nov

Valid

Herrera et al.

Early Cretaceous (AptianAlbian)

Tevshiingovi Formation

 Mongolia

A member of Bennettitales.

Otozamites toshioensoi[131]

Sp. nov

Valid

Yamada, Legrand & Nishida

Early Cretaceous (Albian)

Sasayama Group

 Japan

Ovalocarpus[132]

Gen. et sp. nov

Valid

Naugolnykh

Early Permian

 Russia

A member of Ginkgoales belonging to the family Cheirocladaceae. Genus includes new species O. ovoides.

Pachytestopsis[133]

Gen. et sp. nov

Valid

McLoughlin, Bomfleur & Drinnan

Permian (Changhsingian)

Fort Cooper Coal Measures

 Australia

A member of Glossopteridales. Genus includes new species P. tayloriorum.

Phoenicopsis kurminensis[134]

Sp. nov

Valid

Frolov in Frolov & Mashchuk

Middle Jurassic

Irkutsk Basin

 Russia

A member of Leptostrobales (= Czekanowskiales).

Podozamites harrisii[135]

Sp. nov

Valid

Shi et al.

Early Cretaceous (AptianAlbian)

Tevshiin Govi Formation

 Mongolia

A conifer belonging to the family Podozamitaceae, described on the basis of leaves.

Pseudotorellia kiensis[136]

Sp. nov

Valid

Nosova & Golovneva

Late Cretaceous

 Russia

A member of Ginkgoales, described on the basis of leaves.

Pseudotorellia palustris[135]

Sp. nov

Valid

Shi et al.

Early Cretaceous (AptianAlbian)

Tevshiin Govi Formation

 Mongolia

A member of Ginkgoales, described on the basis of leaves.

Pseudotorellia parvifolia[136]

Sp. nov

Valid

Nosova & Golovneva

Early Cretaceous

 Russia

A member of Ginkgoales, described on the basis of leaves.

Pseudotorellia resinosa[135]

Sp. nov

Valid

Shi et al.

Early Cretaceous (AptianAlbian)

Tevshiin Govi Formation

 Mongolia

A member of Ginkgoales, described on the basis of leaves.

Pterophyllum philippoviae[137]

Sp. nov

Valid

Gnilovskaya & Golovneva

Late Cretaceous (TuronianConiacian)

 Russia
( Magadan Oblast)

A member of Bennettitales.

Pterophyllum terechoviae[137]

Sp. nov

Valid

Gnilovskaya & Golovneva

Late Cretaceous (Maastrichtian)

Kakanaut Formation

 Russia
( Koryak Okrug)

A member of Bennettitales.

Ptilozamites longifolia[138]

Sp. nov

Valid

Cariglino, Monti & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

A seed fern.

Rufloria glabra[139]

Sp. nov

Valid

Gomankov

Permian

 Russia

A member of Pinopsida belonging to the group Cordaitanthales and to the family Rufloriaceae.

Samaropsis shenii[124]

Sp. nov

Valid

Wang & Sun in Wang et al.

Early Permian

Taiyuan Formation

 China

A seed fossil belonging to the group Cordaitopsida and the family Cordaitaceae.

Solenites haojiagouensis[140]

Sp. nov

Valid

Yang et al.

Late Triassic

Haojiagou Formation

 China

A member of Czekanowskiales.

Sphenopteris valentinii[141]

Sp. nov

Valid

Forte & Kerp in Forte et al.

Permian (Kungurian)

Tregiovo Formation

 Italy

A fern-like plant, probably a seed fern.

Trisquama[142]

Gen. et sp. nov

Valid

Gordenko & Broushkin

Middle Jurassic (Bathonian)

 Russia
( Kursk Oblast)

A gymnosperm of uncertain phylogenetic placement, belonging to the new order Trisquamales. Genus includes new species T. valentinii.

Williamsonia durikaiensis[117]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Jurassic (PliensbachianAalenian)

 Australia

A member of Bennettitales belonging to the family Williamsoniaceae.

Williamsonia eskensis[117]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Middle Triassic

Esk Formation

 Australia

A member of Bennettitales belonging to the family Williamsoniaceae.

Williamsonia gracilis[117]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Early Cretaceous (BerriasianHauterivian)

Lees Sandstone

 Australia

A member of Bennettitales belonging to the family Williamsoniaceae.

Williamsonia ipsvicensis[117]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Late Triassic (Carnian or earliest Norian)

Blackstone Formation

 Australia

A member of Bennettitales belonging to the family Williamsoniaceae.

Williamsonia rugosa[117]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Middle Jurassic (AalenianBajocian)

 Australia

A member of Bennettitales belonging to the family Williamsoniaceae.

Wintucycas beatrizae[143]

Sp. nov

Valid

Martínez, Ottone & Artabe

Paleocene

Pichaihue Limestone

 Argentina

A cycad belonging to the group Encephalartoideae.

Zamia nelliae[144]

Sp. nov

Valid

Erdei & Calonje in Erdei et al.

Late Eocene

Gatuncillo Formation

 Panama

A cycad, a species of Zamia.

Other plants[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Acitheca murphyi[145]

Sp. nov

Valid

Correia et al.

Carboniferous (Gzhelian)

Douro Basin

 Portugal

A marattialean fern.

Adoketophyton pingyipuensis[146]

Sp. nov

Valid

Edwards & Li

Early Devonian

Pingyipu Group

 China

Apiculatasporites ruptus[147]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

 Argentina

A trilete spore.

Aptychellites[148]

Gen. et sp. nov

Valid

Schäfer-Verwimp, Hedenäs, Ignatov & Heinrichs in Kaasalainen et al.

Miocene

Dominican amber

 Dominican Republic

A moss resembling members of the extant genus Aptychella of the family Pylaisiadelphaceae. Genus includes new species A. fossilis.

Arthropitys taoshuyuanensis[149]

Sp. nov

Valid

Chen et al.

Permian (Wuchiapingian)

Wutonggou Formation

 China

A member of Calamitaceae.

Asinisetum plaatkopensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Azolla coloniensis[151]

Sp. nov

Valid

De Benedetti et al.

Late Cretaceous

 Argentina

A species of Azolla.

Balenosetum[150]

Gen. et sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales. Genus includes new species B. candlewaxia.

Baoyinia[152]

Gen. et sp. nov

Valid

Edwards & Li

Early Devonian

Pingyipu Group

 China

A zosterophyll. Genus includes new species B. sichuanensis.

Calamospora fissurata[153]

Sp. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Ordóñez Formation

 Argentina

A spore taxon.

Cetistachys[150]

Gen. et sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales. Genus includes new species C. cetenis.

Cheilolejeunea lamyi[154]

Sp. nov

Valid

Heinrichs et al.

Miocene

Dominican amber

 Dominican Republic

A member of Lejeuneaceae.

Cladophlebis akulovii[113]

Sp. nov

Valid

Frolov in Frolov & Mashchuk

Middle Jurassic

Taltsy Formation

 Russia

A fern of uncertain affinities.

Cladophlebis odintsovае[113]

Sp. nov

Valid

Frolov & Mashchuk

Middle Jurassic

Prisayanskaya Formation

 Russia

A fern of uncertain affinities.

Cooksonia barrandei[155]

Sp. nov

Valid

Libertín et al.

Early Silurian

Motol Formation

 Czech Republic

Coptospora santacrucensis[98]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

A spore taxon similar to spores of extant members of the families Sphaerocarpaceae, Ricciaceae and Riellaceae.

Crybelosporites corrugatus[98]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

A spore taxon related to the family Marsileaceae.

Culcita remberi[156]

Sp. nov

Valid

Pinson, Manchester & Sessa

Miocene

Clarkia fossil beds

 United States
( Idaho)

A species of Culcita.

Cymatiosphaera robusta[147]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

 Argentina

A prasinophyte.

Densoisporites patagonicus[98]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

A spore taxon with affinities with the Lycopsida.

Dictyophyllum menendezii[157]

Sp. nov

Valid

Bodnar et al.

Middle Triassic (Ladinian)

Cortaderita Formation

 Argentina

A fern belonging to the family Dipteridaceae.

Digitopteris[158]

Gen. et sp. nov

Valid

Pott & Bomfleur in Pott et al.

Late Triassic (Carnian)

 Austria

A fern belonging to the family Dipteridaceae. Genus includes new species D. repanda.

Echinostachys tinensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae.

Eddianna[159]

Gen. et sp. nov

Valid

Pfeiler & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

A member of Rhyniopsida. Genus includes new species E. gaspiana

Electorotheca[160]

Gen. et sp. nov

Valid

Morris, Edwards & Pedersen

Devonian (Lochkovian)

Freshwater West Formation

 United Kingdom

A plant of uncertain phylogenetic placement. Genus includes new species E. enigmatica.

Emphanisporites genselae[161]

Sp. nov

Valid

Wellman

Devonian (Pragian-earliest Emsian)

Val d'Amour Formation

 Canada
( New Brunswick)

A plant described on the basis of fossil spores.

Emphanisporites morrisae[161]

Sp. nov

Valid

Wellman

Devonian (Pragian-earliest Emsian)

Campbellton Formation
Val d'Amour Formation

 Canada
( New Brunswick)

A plant described on the basis of fossil spores.

Emphanisporites? tenuis[162]

Sp. nov

Valid

García Muro, Rubinstein & Steemans

Silurian (Přídolí)

Los Espejos Formation

 Argentina

A plant described on the basis of fossil spores.

Endosporites menendezi[153]

Nom. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Agua Colorada Formation

 Argentina

A spore taxon; a replacement name for Endosporites parvus  Menéndez (1965).

Equisetites budagaevae[113]

Sp. nov

Valid

Frolov in Frolov & Mashchuk

Middle Jurassic

Prisayanskaya Formation

 Russia

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetites greenensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetites kanensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetites kapokensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetites nuwensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetites pentapenensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetites umkensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetostachys boesmansensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetostachys calensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetostachys cervensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetostachys jaarensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetostachys kroonensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetostachys laggensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetostachys luziensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetostachys penensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetostachys pokensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Escapia[163]

Gen. et sp. nov

Valid

Rothwell, Millay & Stockey

Early Cretaceous

 Canada
( British Columbia)

A member of Marattiales. Genus includes new species E. christensenioides.

Frederica kurdistanensis[164]

Sp. nov

Valid

Bucur et al.

Paleogene

Khurmala Formation

 Iraq

A green alga belonging to the group Dasycladales.

Frullania grabenhorstii[165]

Sp. nov

Valid

Feldberg et al.

Eocene

Bitterfeld amber

 Germany

A liverwort, a species of Frullania.

Frullania zerovii[166]

Sp. nov

Valid

Mamontov, Ignatov & Perkovsky

Eocene

Rovno amber

 Ukraine

A liverwort, a species of Frullania.

Geocalyx heinrichsii[167]

Sp. nov

Valid

Katagiri

Eocene

Baltic amber

Europe (Baltic Sea region)

A liverwort.

Gleicheniorachis sinensis[168]

Sp. nov

Valid

Tian et al.

Late Jurassic

Manketouebo Formation

 China

A fern belonging to the family Gleicheniaceae.

Groenlandia pescheri[169]

Sp. nov

Valid

Uhl & Poschmann

Oligocene (Chattian)

Enspel Formation

 Germany

A species of Groenlandia.

Heilongjiangcaulis[170]

Gen. et sp. nov

Valid

Cheng & Yang

Cretaceous

Songliao Basin

 China

A tree fern. Genus includes new species H. keshanensis.

Holttumopteris[171]

Gen. et sp. nov

Valid

Regalado et al.

Cretaceous (AlbianCenomanian )

Burmese amber

 Myanmar

A eupolypod fern. Genus includes new species H. burmensis.

Horriditriletes chacoparanensis[153]

Sp. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Ordóñez Formation

 Argentina

A spore taxon.

Hypnites lycopodioides[172]

Nom. nov

Valid

Ignatov & Váňa in Winterscheid et al.

Late Oligocene

Rott Formation

 Germany

A member of Hypnales of uncertain phylogenetic placement; a replacement name for Hypnum lycopodioides Weber in Wessel & Weber.

Jaffrezocodium[173]

Gen. et sp. nov

Valid

Granier

Cretaceous (Albian-Cenomanian)

 France
 Spain

A green alga belonging to the group Bryopsidales. Genus includes new species J. bipennatus.

Jiangyounia[152]

Gen. et sp. nov

Valid

Edwards & Li

Early Devonian

Pingyipu Group

 China

A rhyniophyte. Genus includes new species J. gengi.

Knorripteris taylorii[174]

Sp. nov

Valid

Galtier et al.

Triassic

 Germany

A pteridophyte of uncertain phylogenetic placement.

Kowieria[175]

Gen. et sp. nov

Valid

Gess & Prestianni

Devonian (Famennian)

Witpoort Formation

 South Africa

A lycopsid. Genus includes new species K. alveoformis.

Kraaiostachys[150]

Gen. et sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation
Santa Clara Formation

 Mexico
 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. Genus includes new species K. plaatkopensis.

Leiosphaeridia ibateensis[2]

Sp. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

An acritarch, probably a prasinophyte.

Leiotriletes malanzanensis[153]

Nom. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Malanzán Formation

 Argentina

A spore taxon; a replacement name for Leiotriletes tenuis Azcuy (1975).

Lejeunea miocenica[148]

Sp. nov

Valid

Heinrichs, Schäfer-Verwimp, Renner & Lee in Kaasalainen et al.

Miocene

Dominican amber

 Dominican Republic

A liverwort, a species of Lejeunea.

Lilingostrobus[176]

Gen. et sp. nov

Valid

Gerrienne et al.

Devonian (Famennian)

Xikuangshan Formation

 China

A member of Lycopsida of uncertain phylogenetic placement. Genus includes new species L. chaloneri.

Marsilea mascogos[177]

Sp. nov

Valid

Estrada-Ruiz et al.

Late Cretaceous (late Campanian)

Olmos Formation

 Mexico

A species of Marsilea.

Molaspora aspera[178]

Sp. nov

Valid

Zavialova & Batten

Late Cretaceous (Cenomanian)

 France

A member of Marsileaceae described on the basis of megaspores.

Moltenomites[150]

Gen. et 2 sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales. Genus includes new species M. linearifolia and M. attenuatifolia.

Naybandoporella[179]

Gen. et sp. et comb. nov

Valid

Senowbari-Daryan

Late Triassic (Rhaetian)

Nayband Formation

 Greece
 Iran

A green alga belonging to the group Dasycladales, possibly a member of the family Triploporellaceae. Genus includes new species N. rhaetica, as well as "Probolocupsis" sarmeikensis Senowbari-Daryan (2014).

Oleandra bangmaii[180]

Sp. nov

Valid

Xie et al.

Late Miocene

 China

A species of Oleandra.

Ornicephalum[146]

Gen. et comb. nov

Valid

Edwards & Li

Early Devonian

Pingyipu Group

 China

A member of Lycophytina; a new genus for "Zosterophyllum" sichuanensis Geng (1992).

?Osmunda weylandii[172]

Sp. nov

Valid

Kvaček & Winterscheid in Winterscheid et al.

Late Oligocene

Rott Formation

 Germany

A fern, possibly a species of Osmunda.

Osmundopsis zunigai[181]

Sp. nov

Valid

Coturel et al.

Late Triassic (Carnian)

Potrerillos Formation

 Argentina

A fern belonging to the family Osmundaceae.

Paraschizoneura fredensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae.

Paraschizoneura quadripenensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae.

Paraschizoneura rooipoortensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae.

Paraschizoneura telensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae.

Peromonolites globosum[98]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

A spore taxon with affinities with the Filicales.

Pleurorhizoxylon[182]

Gen. et sp. nov

Valid

Zhang et al.

Late Devonian

 China

An early euphyllophyte. Genus includes new species P. yixingense.

Polycladophyton[152]

Gen. et sp. nov

Valid

Edwards & Li

Early Devonian

Pingyipu Group

 China

A rhyniophyte. Genus includes new species P. gracilis.

Pterospermella simplex[147]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

 Argentina

A prasinophyte.

Radula intecta[148]

Sp. nov

Valid

Renner, Schäfer-Verwimp & Heinrichs in Kaasalainen et al.

Miocene

Dominican amber

 Dominican Republic

A species of Radula

Rafaherbstia[183]

Ge. et sp. nov

Valid

Vera & Césari

Early Cretaceous (Aptian)

Cerro Negro Formation

Antarctica
(Livingston Island)

A cyathealean tree fern. Genus includes new species R. nishidai.

Retitriletes ornatus[98]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

A spore taxon with affinities with the Lycopodiales.

Retusotriletes archangelskyi[153]

Sp. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Ordóñez Formation

 Argentina

A spore taxon.

Schizoneura cucumis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae.

Schizoneura koningensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Echinostachyales and the family Echinostachyaceae.

Scleropteris iljiniana[118]

Sp. nov

Valid

Kiritchkova, Kostina & Nosova

Jurassic

 Russia

Sichuania[152]

Gen. et sp. nov

Valid

Edwards & Li

Early Devonian

Pingyipu Group

 China

A zosterophyll. Genus includes new species S. uskielloides.

Sphenophyllum changxingense[184]

Sp. nov

Valid

Huang et al.

Late Devonian

Wutong Formation

 China

Suppiluliumaella tarburensis[185]

Sp. nov

Valid

Rashidi & Schlagintweit

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A green alga belonging to the group Dasycladales.

Tauridium elongatum[186]

Sp. nov

Valid

Jia & Song

Late Permian

Changxing Formation

 China

A member of Gymnocodiaceae.

Taurocusporites inaequalis[98]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

A spore taxon with affinities with the Bryophyta sensu lato.

Tempskya zhangii[187]

Sp. nov

Valid

Xiaonan, Fengxiang & Yeming

Cretaceous

 China

A tree fern

Tiaomaphyton[188]

Gen. et sp. nov

Valid

Xu, Fu & Wang

Middle Devonian

Tiaomachian Formation

 China

A Colpodexylon-like lycopsid. Genus includes new species T. fui.

Townroviamites multifoliata[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Townroviamites petfredae[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Townroviamites stellata[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Tricarinella[189]

Gen. et sp. nov

Valid

Savoretti et al.

Early Cretaceous (Valanginian)

 Canada
( British Columbia)

A moss belonging to the family Grimmiaceae. Genus includes new species T. crassiphylla.

Viridistachys[150]

Gen. et 2 sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae. Genus includes new species V. moltenensis and V. gypsensis.

Zonulamites annumensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Zonulamites collensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Zonulamites elandensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Zonulamites viridensis[150]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Zosterophyllum ovatum[146]

Sp. nov

Valid

Edwards & Li

Early Devonian

Pingyipu Group

 China

General research[edit]

  • A study attempting to establish a timescale of early land plant evolution is published by Morris et al. (2018).[190][191][192]
  • Assemblage of putative Ordovician (Hirnantian) land plants is described from the Zbrza locality in the southern Świętokrzyskie Mountains (Poland) by Salamon et al. (2018).[193]
  • A study on the structure and variation of areolation patterns in leaves of Paleozoic protosphagnalean mosses is published by Ivanov, Maslova & Ignatov (2018).[194]
  • A study on the phylogenetic relationships of the Cretaceous mosses Meantoinea alophosioides and Eopolytrichum antiquum within Polytrichaceae is published by Bippus, Escapa & Tomescu (2018).[195]
  • Meristems of rooting axes belonging to Asteroxylon mackiei are described from the Rhynie chert (United Kingdom) by Hetherington & Dolan (2018).[196]
  • A study re-examining the evidence on the speed of growth and life cycle of the tree-like lycophytes from the Carboniferous (Pennsylvanian) coal swamps, and in particular addressing an earlier study by Boyce & DiMichele (2016),[197] is published by Thomas & Cleal (2018).[198][199]
  • A study on the impact of increased ultraviolet irradation (caused by volcanism-induced ozone shield deterioration) on plants during the Permian–Triassic extinction event is published by Benca, Duijnstee & Looy (2018).[200]
  • A study on the composition of the Late Triassic flora of the American Southwest, based on palynological data from the Chinle Formation, and indicative of a floral turnover occurring in the middle Norian, is published by Baranyi et al. (2018).[201]
  • A study on the Middle Jurassic flora from Yorkshire (United Kingdom) as indicated by pollen and spores, and on the possible dinosaur-plant interactions in the area is published by Slater et al. (2018).[202]
  • Occurrence of the characean genus Tolypella is reported from the Lower Cretaceous of the Garraf Massif (Catalonia, Spain) by Martín-Closas et al. (2018), representing the oldest known record of the genus reported so far.[203]
  • A study on the spore wall structure and development in Psilophyton dawsonii is published by Noetinger, Strayer & Tomescu (2018).[204]
  • Lycopsid megaspores preserved with fossil starch, probably used to attract and reward animals for megaspore dispersal, are described from the Permian of north China by Liu et al. (2018).[205]
  • A study on the phylogenetic relationships of extant and fossil members of Equisetales is published by Elgorriaga et al. (2018).[206]
  • A study on the anatomy of the Devonian fern-like plant Shougangia bella is published by Wang et al. (2018).[207]
  • A study on the phylogenetic relationships of a putative Triassic fern Pekinopteris, based on evaluation of specimens preserving fertile pinnae, is published by Axsmith, Skog & Pott (2018).[208]
  • A study on the anatomical structure of Coniopteris hymenophylloides (a fossil fern belonging to the family Dicksoniaceae) based on well-preserved materials from the Middle Jurassic Yaojie Formation (China), including sterile and fertile pinnae, sporangia and in situ spores, epidermal cuticles and stomatal complexes, is published by Xin et al. (2018).[209]
  • A study on the phylogenetic relationships of extant and fossil marattialean ferns is published by Rothwell, Millay & Stockey (2018).[210]
  • A study on the phylogenetic relationships of members of Dipteridaceae based on data from extant and fossil taxa is published by Choo & Escapa (2018).[211]
  • A study on the phylogenetic relationships of early seed plants, aneurophytalean progymnosperms, Stenokoleales and several Devonian plants of uncertain affinities is published by Toledo, Bippus & Tomescu (2018).[212]
  • Plant fossils representing the genera Glossopteris, Vertebraria, Samaropsis, Paracalamites, Sphenophyllum and Dichotomopteris are described from the Permian strata in the Tabbowa Basin of Sri Lanka by Edirisooriya, Dharmagunawardhane & McLoughlin (2018), thus being the first representatives of the distinctive Permian Glossopteris flora reported from that country.[213]
  • Fossils of member of the genus Glossopteris related to the species Glossopteris communis from India are described from the Permian deposits of southeastern Gobi (Mongolia) by Naugolnykh & Uranbileg (2018).[214]
  • A study on the fossils of glossopterids from the Permian (Lopingian) Buckley Formation (Antarctica) will be published by DeWitt et al. (2018), who present evidence of glossopterids shedding their pollen organs during a different time of the season than Glossopteris leaves.[215]
  • Blomenkemper et al. (2018) report the discovery of mixed plant-fossil assemblages in Late Permian deposits on the margins of the Dead Sea in Jordan, including fossils of seed ferns, members of Bennettitales and the earliest records of conifers reported so far.[216]
  • A study on the phylogeny of conifers, comparing the inferred phylogenetic relationships and estimated divergence ages with the paleobotanical record, is published by Leslie et al. (2018).[217]
  • A study on the atmospheric carbon dioxide concentration levels in the Early Cretaceous based on data from specimens of the fossil conifer species Pseudofrenelopsis papillosa is published by Jing & Bainian (2018).[218]
  • A study on the phylogenetic relationships of members of Pinaceae based on data from extant and fossil taxa is published by Gernandt et al. (2018).[219]
  • A study on the epidermis of the leaves of the fossil pine Pinus mikii and on the phylogenetic relationships of the species is published by Yamada & Yamada (2018).[220]
  • A study on the anatomy and phylogenetic relationships of Austrohamia acanthobractea, based on data from leafy twigs with attached pollen cones and seed cones from the Middle Jurassic Daohugou Lagerstätte (China), is published by Dong et al. (2018).[221]
  • Rediscovery of the holotype specimen of Weltrichia fabrei is reported by Moreau & Thévenard (2018).[222]
  • Revision of gymnosperm species known from the Eocene Baltic amber is published by Alekseev (2018).[223]
  • A study on the phylogenetic relationships of the vascular plants and the timescale of their evolution, attempting to establish when the flowering plants originated, is published by Barba-Montoya et al. (2018).[224]
  • A study on the early evolution of Chloranthaceae, focusing on the phylogenetic relationships of the Cretaceous taxa Canrightiopsis and Pseudoasterophyllites, is published by Doyle & Endress (2018).[225]
  • Fossil assemblage including plant and vertebrate remains is described from the Turonian Ferron Sandstone Member of the Mancos Shale Formation (Utah, United States) by Jud et al. (2018), who report turtle and crocodilian remains and an ornithopod sacrum, as well as a large silicified log assigned to the genus Paraphyllanthoxylon, representing the largest known pre-Campanian flowering plant reported so far and the earliest documented occurrence of an angiosperm tree more than 1.0 m in diameter.[226]
  • A study on the phylogenetic relationships of extant and fossil members of Zingiberales is published by Smith et al. (2018).[227]
  • A study on the phylogenetic relationships of Cornales based on data from extant and fossil taxa is published by Atkinson (2018).[228]
  • A study on the microstructure of the fossils assigned to the genus Operculifructus, and on its implications for inferring the phylogenetic relationships of this genus, is published by Hayes et al. (2018).[229]
  • A study on the phylogenetic relationships of the flowering plants and Gnetales, as indicated by morphological data from extant and fossil taxa, is published by Coiro, Chomicki & Doyle (2018).[230]
  • Revision of the taxonomy of the Cretaceous monocot genus Viracarpon is published by Matsunaga et al. (2018), who transfer the species Coahuilocarpon phytolaccoides known from the Campanian Cerro del Pueblo Formation (Mexico) to the genus Viracarpon, thus rejecting the hypothesis that Viracarpon was endemic to India.[231]
  • Microfossil remains of early grasses extracted from a specimen of the Early Cretaceous dinosaur species Equijubus normani from China are described by Wu, You & Li (2018).[232]
  • Cantisolanum daturoides from the Eocene London Clay Formation, previously suggested to be a member of the family Solanaceae, is reinterpreted as more likely to be a commelinid monocot by Särkinen et al. (2018).[233]
  • A study on the lower threshold of extant palm temperature tolerance, as well as on the potential of using the presence of palm fossils to infer past climate, is published by Reichgelt, West & Greenwood (2018).[234]
  • A study on the human use of rainforest plant resources of prehistoric Sri Lanka, as indicated by data from phytoliths from the Fahien Rock Shelter sediments, is published by Premathilake & Hunt (2018).[235]
  • A study on the occurrence of bananas in the archaeological sequence at Fahien Rock Shelter (south‐west Sri Lanka), as indicated by seed and leaf phytolith evidence, is published by Premathilake & Hunt (2018).[236]
  • A study on the macroevolutionary dynamics of extinction and adaptation of palms with megafaunal fruits in the late Cenozoic is published by Onstein et al. (2018), who interpret their findings as indicating that progressive loss of megafaunal frugivores during the late Cenozoic likely resulted in increased extinction rates of palms with megafaunal fruits.[237]
  • A study on the floral and fruit morphology of the early eudicot species Ranunculaecarpus quinquecarpellatus is published by Manchester et al. (2018).[238]
  • A study on the principal morphological characters distinguishing shade and sun leaves in modern species of Liquidambar, and on their implications for identifying leaf polymorphisms in fossil members of this genus that could otherwise be used to establish unwarranted new species, is published by Maslova et al. (2018).[239]
  • A study on fossil pollen of members of the group Ericales from five Eocene localities in the United Kingdom, Austria, Germany and China, aiming to describe fossil pollen types and compare them with the most similar looking pollen of modern species, is published by Hofmann (2018).[240]
  • A new fossil Loranthaceae pollen type (the first representative of this family in the fossil record of Africa) is described from the earliest Miocene of Saldanha Bay (South Africa) by Grímsson et al. (2018).[241]
  • A study on the types of fossil oak pollen grains from the Last Glacial Maximum sediments from the northern South China Sea, and on their implications for inferring regional climatic conditions in this area during the Last Glacial Maximum, is published by Dai, Hao & Mao (2018).[242]
  • A pistillate partial inflorescence of a member of the genus Castanopsis is described from Baltic amber by Sadowski, Hammel & Denk (2018), representing the first record of this genus from Baltic amber and the first pistillate inflorescence of Fagaceae from Eurasia reported so far.[243]
  • A study on factors which influenced the diversification processes and diversity dynamics of Cenozoic woody flowering plants is published by Shiono et al. (2018).[244]
  • Description of plant remains and palynomorphs preserved in the coprolites produced by large dicynodonts from the Triassic Chañares Formation (Argentina), and a study on the affinities of the plants preserved in those coprolites, is published by Perez Loinaze et al. (2018).[245]
  • A study on the nutritional value of plants grown under elevated CO2 levels, evaluating the hypothesis that constraints on sauropod diet quality were driven by Mesozoic CO2 concentration, is published by Gill et al. (2018).[246]
  • A study on the diversity, frequency and representation of insect damage of fossil plant specimens from the Permian La Golondrina Formation (Argentina) is published by Cariglino (2018).[247]
  • A study on the insect herbivory on fossil ginkgoalean and bennettitalean leaves from the Middle Jurassic Daohugou Beds (China), and on defenses of these plants against insect herbivory, is published by Na et al. (2018).[248]
  • Diverse gymnosperm and angiosperm fossils, displaying affinities with the flora of the Araripe Basin (Santana Formation) as well as those identified in deposits from the North America (Potomac Group), are described from the Lower Cretaceous Codó Formation (Brazil) by Lindoso et al. (2018).[249]
  • A study on the impact of the Cenomanian-Turonian boundary event on the continental flora, as indicated by spore-pollen fossil record, is published by Heimhofer et al. (2018).[250]
  • Insect and plant inclusions are reported from amber from the uppermost Campanian Kabaw Formation of Tilin (Myanmar) by Zheng et al. (2018).[251]
  • Grimaldi et al. (2018) report biological inclusions (fungi, plants, arachnids and insects) in amber from the Paleogene Chickaloon Formation of Alaska, representing the northernmost deposit of fossiliferous amber from the Cenozoic.[252]
  • Organically preserved plant fossils, including leaves with cuticular preservation, are described from the Paleogene Ligorio Márquez Formation (Argentina) by Carpenter, Iglesias & Wilf (2018).[253]
  • A study on changes in Eocene plant diversity and floristic composition at Messel (Germany) is published by Lenz & Wilde (2018).[254]
  • An amber layer is reported from the lower part of the Dingqing Formation (late Oligocene) in Lunpola of central Tibet (representing the first record of amber from Tibet) by Wang et al. (2018), who interpret this amber as derived from dipterocarp trees, and who interpret the amber layer as remains of the northernmost dipterocarp forest discovered so far.[255]
  • A study on CO2 concentrations during the early Miocene, as indicated by stomatal characteristics of fossil leaves from a late early Miocene assemblage from Panama and a leaf gas‐exchange model, is published by Londoño et al. (2018).[256]
  • A study evaluating when the plants using the C4 photosynthetic pathway initially expanded on the Australian continent, as indicated by carbon isotope ratios of plant waxes from scientific ocean drilling sediments off north‐western Australia, is published by Andrae et al. (2018).[257]
  • A study on the role of fire during the expansion of C4 grassland ecosystems in the Mio-Pliocene, based on data from molecular proxies from paleosol samples of the Siwalik Group (Pakistan), is published by Karp, Behrensmeyer & Freeman (2018).[258]
  • A study on the macroevolutionary responses of noctuid moths from the group Sesamiina and their associated host-grasses to environmental changes during the Neogene is published by Kergoat et al. (2018).[259]
  • A study on the abundance of the C3 and C4 grasses in the central interior of southern Africa in the Early Pleistocene, as indicated by enamel stable carbon and oxygen isotope data, associated faunal abundance and phytolith evidence from the site of Wonderwerk Cave (South Africa), is published by Ecker et al. (2018).[260]
  • A study on the changes of vegetation in the temperate zone of Asia during an interval containing the Mid-Pleistocene Transition, ~1.2–0.7 million years ago, as indicated by pollen data from a drilling core from the North China Plain, as well as on their effect on the large mammal fauna is published by Xinying et al. (2018).[261]
  • A study on the use of plants by early modern humans during the Middle Stone Age as indicated by analyses of phytoliths from the Pinnacle Point locality (South Africa) is published by Esteban et al. (2018).[262]
  • A study on the distance of seed dispersal by extant and extinct mammalian frugivores and on the impact of the extinction of Pleistocene megafauna on seed dispersal is published by Pires et al. (2018).[263]
  • A study evaluating how mega‐herbivore animal species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Great Britain and Ireland, is published by Jeffers et al. (2018).[264]
  • A study on the seeds preserved in moa coprolites is published by Carpenter et al. (2018), who question the hypothesis that some of the largest-seeded plants of New Zealand were dispersed by moas.[265]
  • A study on the plant–insect interactions in the European forest plant communities in the Upper Pliocene Lagerstätte of Willershausen (Lower Saxony, Germany), the Upper Pliocene locality of Berga (Thuringia, Germany) and the Pleistocene locality of Bernasso (France) is published by Adroit et al. (2018).[266]
  • A study on pollen recovered from hyaena coprolites from Vanguard Cave (Gibraltar), and on its implications for reconstructing the vegetation landscapes in the environment inhabited by southern Iberian Neanderthals during the MIS 3, is published by Carrión et al. (2018).[267]
  • A study on the inner structure of cuticles and carbonaceous compressions of Early Jurassic plants from Argentinian Patagonia, using Focused Ion Beam Scanning Electron Microscopy, is published by Sender et al. (2018).[268]
  • A study on the changing ecology of woodland vegetation of southern mainland Greece during the late Pleistocene and the early-mid Holocene, and on the ecological context of the first introduction of crop domesticates in the southern Greek mainland, as indicated by data from carbonized fuel wood waste from the Franchthi Cave, is published by Asouti, Ntinou & Kabukcu (2018).[269]
  • Evidence of plant domestication and food production from the early and middle Holocene site of Teotonio (southwestern Amazonia, Brazil) is presented by Watling et al. (2018).[270]
  • A study on changes in plant pathogen communities (fungi and oomycetes) in response to changing climate during late Quaternary, as indicated by data from solidified deposits of rodent coprolites and nesting material from the central Atacama Desert spanning the last ca. 49,000 years, is published by Wood et al. (2018).[271]
  • A study on the timing of the origination of the East Asian flora (including Sino-Japanese Flora Metasequoia Flora and Sino-Himalayan Rhododendron Flora), as indicated by molecular and fossil data, is published by Chen et al. (2018).[272]

References[edit]

  1. ^ a b c d Alexander B. Doweld (2018). "New names of fossil Berberidaceae". Phytotaxa. 351 (1): 72–80. doi:10.11646/hytotaxa.351.1.6.
  2. ^ a b c d e Mitsuru Arai; Dimas Dias-Brito (2018). "The Ibaté paleolake in SE Brazil: Record of an exceptional late Santonian palynoflora with multiple significance (chronostratigraphy, paleoecology and paleophytogeography)". Cretaceous Research. 84: 264–285. Bibcode:2018CrRes..84..264A. doi:10.1016/j.cretres.2017.11.014. hdl:11449/175605.
  3. ^ a b c d e f g h i j k l m n o p q r s t Alexander B. Doweld (2018). "Palaeoflora Europaea: Notulae Systematicae ad Palaeofloram Europaeam spectantes I. New names of fossil magnoliophytes of the European Tertiary. I. Miscellaneous families". Phytotaxa. 379 (1): 78–94. doi:10.11646/phytotaxa.379.1.8. S2CID 92221463.
  4. ^ a b c d Hongshan Wang; David L. Dilcher (2018). "Early Cretaceous angiosperm leaves from the Dakota Formation, Hoisington III locality, Kansas, USA". Palaeontologia Electronica. 21 (3): Article number 21.3.34A. doi:10.26879/841.
  5. ^ a b c d Mahesh Prasad; Somlata Gautam; Nupur Bhowmik; Sanjeev Kumar; Sanjai Kumar Singh (2018). "New fossil leaves of Annonaceae and Achariaceae from Churia Group of Nepal and their phytogeographical implications". The Palaeobotanist. 67 (1): 47–66. doi:10.54991/jop.2018.47. S2CID 252304015.
  6. ^ Lina B. Golovneva (2018). "Diversity of palmately lobed leaves in the early–middle Albian of eastern Russia". Cretaceous Research. 84: 18–31. Bibcode:2018CrRes..84...18G. doi:10.1016/j.cretres.2017.11.005. S2CID 133903556.
  7. ^ a b Maria G. Moiseeva; Tatiana M. Kodrul; Alexei B. Herman (2018). "Early Paleogene Boguchan flora of the Amur Region (Russian Far East): Composition, age and palaeoclimatic implications". Review of Palaeobotany and Palynology. 253: 15–36. Bibcode:2018RPaPa.253...15M. doi:10.1016/j.revpalbo.2018.03.003. S2CID 134765560.
  8. ^ a b Andrew C. Rozefelds; Marcelo R. Pace (2018). "The first record of fossil Vitaceae wood from the Southern Hemisphere, a new combination for Vitaceoxylon ramunculiformis, and reappraisal of the fossil record of the grape family (Vitaceae) from the Cenozoic of Australia". Journal of Systematics and Evolution. 56 (4): 283–296. doi:10.1111/jse.12300. S2CID 196634173.
  9. ^ a b c d N. Awasthi; R.C. Mehrotra; A. Shukla (2018). "Some new fossil woods from the Cuddalore Sandstone of south India". The Palaeobotanist. 67 (1): 33–46. doi:10.54991/jop.2018.46. S2CID 252289545.
  10. ^ Eliana Moya; Mariana Brea (2018). "First Pleistocene record of fossil wood of Bignoniaceae in the Americas and a comparison with the extant Tabebuia alliance and Tecomeae". Botanical Journal of the Linnean Society. 187 (2): 303–318. doi:10.1093/botlinnean/boy019.
  11. ^ Jun-Ling Dong; Bai-Nian Sun; Teng Mao; Chun-Hui Liu; Xue-Lian Wang; Ming-Xuan Sun; Fu-Jun Ma; Qiu-Jun Wang (2018). "The occurrence of Burretiodendron from the Oligocene of South China and its geographic analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 512: 95–105. Bibcode:2018PPP...512...95D. doi:10.1016/j.palaeo.2017.07.004. S2CID 133617973.
  12. ^ Hua-Sheng Huang; Tao Su; Zhe-Kun Zhou (2018). "Fossil leaves of Buxus (Buxaceae) from the Upper Pliocene of Yunnan, SW China". Palaeoworld. 27 (2): 271–281. doi:10.1016/j.palwor.2017.12.003. S2CID 134796110.
  13. ^ Meng Han; Steven R. Manchester; Yan Wu; Jianhua Jin; Cheng Quan (2018). "Fossil fruits of Canarium (Burseraceae) from Eastern Asia and their implications for phytogeographical history". Journal of Systematic Palaeontology. 16 (10): 841–852. doi:10.1080/14772019.2017.1349624. S2CID 90812518.
  14. ^ Cristina I. Nunes; Roberto R. Pujana; Ignacio H. Escapa; María A. Gandolfo; N. Rubén Cúneo (2018). "A new species of Carlquistoxylon from the Early Cretaceous of Patagonia (Chubut province, Argentina): the oldest record of angiosperm wood from South America". IAWA Journal. 39 (4): 406–426. doi:10.1163/22941932-20170206. S2CID 92383900.
  15. ^ a b c Luliang Huang; Jianhua Jin; Cheng Quan; Alexei A. Oskolski (2018). "Mummified fossil woods of Fagaceae from the upper Oligocene of Guangxi, South China". Journal of Asian Earth Sciences. 152: 39–51. Bibcode:2018JAESc.152...39H. doi:10.1016/j.jseaes.2017.11.029.
  16. ^ a b George Poinar, Jr. (2018). "Mid-Cretaceous angiosperm flowers in Myanmar amber". In Beatrice Welch; Micheal Wilkerson (eds.). Recent advances in plant research. Nova Science Publishers, Incorporated. pp. 187–218. ISBN 978-1-53614-170-2.
  17. ^ Anumeha Shukla; R.C. Mehrotra (2018). "A new fossil wood from the highly diverse early Eocene equatorial forest of Gujarat (western India)". Palaeoworld. 27 (3): 392–398. doi:10.1016/j.palwor.2018.01.003. S2CID 134657292.
  18. ^ a b c d e Alexander B. Doweld (2018). "New names of fossil Cyperaceae of Northern Eurasia". Phytotaxa. 356 (2): 131–144. doi:10.11646/phytotaxa.356.2.3. S2CID 90599488.
  19. ^ a b c Clément Coiffard; Barbara A. R. Mohr (2018). "Cretaceous tropical Alismatales in Africa: diversity, climate and evolution". Botanical Journal of the Linnean Society. 188 (2): 117–131. doi:10.1093/botlinnean/boy045.
  20. ^ a b c Steven Manchester; Kathleen B. Pigg; Melanie L. Devore (2018). "Trochodendraceous fruits and foliage in the Miocene of western North America" (PDF). Fossil Imprint. 74 (1–2): 45–54. doi:10.2478/if-2018-0004. S2CID 133942808.
  21. ^ a b Steven Manchester; Kathleen B. Pigg; Zlatko Kvaček; Melanie L. Devore; Richard M. Dillhoff (2018). "Newly recognized diversity in Trochodendraceae from the Eocene of western North America". International Journal of Plant Sciences. 179 (8): 663–676. doi:10.1086/699282. S2CID 92201595.
  22. ^ Steven R. Manchester; Zlatko Kvaček; Walter S. Judd (2020). "Morphology, anatomy, phylogenetics and distribution of fossil and extant Trochodendraceae in the Northern Hemisphere". Botanical Journal of the Linnean Society. 195 (3): 467–484. doi:10.1093/botlinnean/boaa046.
  23. ^ a b c R.R. Pujana; A. Iglesias; M.E. Raffi; E.B. Olivero (2018). "Angiosperm fossil woods from the Upper Cretaceous of Western Antarctica (Santa Marta Formation)". Cretaceous Research. 90: 349–362. Bibcode:2018CrRes..90..349P. doi:10.1016/j.cretres.2018.06.009. S2CID 134433986.
  24. ^ a b Dimitra Mantzouka (2018). "The first report of Cryptocaryoxylon from the Neogene (early Miocene) of Eurasia (Eastern Mediterranean: Lesbos and Lemnos Islands, Greece)" (PDF). Fossil Imprint. 74 (1–2): 29–36. doi:10.2478/if-2018-0002. S2CID 133942938.
  25. ^ a b c d Alexander B. Doweld (2018). "Cussoniophyllum, Diplosophyllum, Hederago and Priscophyllum, new generic names for Upper Cretaceous plants of Europe". Annales Botanici Fennici. 55 (1–3): 93–98. doi:10.5735/085.055.0111. S2CID 91026479.
  26. ^ Steven R. Manchester; David L. Dilcher; Walter S. Judd; Brandon Corder; James F. Basinger (2018). "Early Eudicot flower and fruit: Dakotanthus gen. nov. from the Cretaceous Dakota Formation of Kansas and Nebraska, USA". Acta Palaeobotanica. 58 (1): 27–40. doi:10.2478/acpa-2018-0006. S2CID 133968437.
  27. ^ a b c d e Ye-Ming Cheng; Yu-Fei Wang; Feng-Xiang Liu; Yue-Gao Jin; R.C. Mehrotra; Xiao-Mei Jiang; Cheng-Sen Li (2018). "The Neogene wood flora of Yuanmou, Yunnan, southwest China". IAWA Journal. 39 (4): 427–474. doi:10.1163/22941932-20170214. S2CID 91605892.
  28. ^ George O. Poinar, Jr (2019). "Exalloanthum, a new name for a fossil angiosperm flower in Myanmar amber". Journal of the Botanical Research Institute of Texas. 13 (2): 475–476. doi:10.17348/jbrit.v13.i2.800. S2CID 244521650.
  29. ^ a b Itzel Guzmán-Vázquez; Laura Calvillo-Canadell; Francisco Sánchez-Beristain (2018). "Leaves of Menispermaceae and Dioscoreaceae from the Olmos Formation (Upper Cretaceous) from the state of Coahuila, Northern Mexico". Review of Palaeobotany and Palynology. 258: 73–82. Bibcode:2018RPaPa.258...73G. doi:10.1016/j.revpalbo.2018.06.014. S2CID 133808069.
  30. ^ a b Vandana Prasad; Anjum Farooqui; Srikanta Murthy; Omprakash S. Sarate; Sunil Bajpai (2018). "Palynological assemblage from the Deccan Volcanic Province, central India: Insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India". Cretaceous Research. 86: 186–198. Bibcode:2018CrRes..86..186P. doi:10.1016/j.cretres.2018.03.004. S2CID 134729292.
  31. ^ Hongshan Wang; David L. Dilcher (2018). "A new species of Donlesia (Ceratophyllaceae) from the Early Cretaceous of Kansas, USA". Review of Palaeobotany and Palynology. 252: 20–28. Bibcode:2018RPaPa.252...20W. doi:10.1016/j.revpalbo.2018.02.002.
  32. ^ a b c Brian A. Atkinson; Ruth A. Stockey; Gar W. Rothwell (2018). "Tracking the initial diversification of asterids: anatomically preserved cornalean fruits from the early Coniacian (Late Cretaceous) of western North America". International Journal of Plant Sciences. 179 (1): 21–35. doi:10.1086/695339. S2CID 91138180.
  33. ^ George O. Poinar Jr.; Kenton L. Chambers (2018). "Endobeuthos paleosum gen. et sp. nov., fossil flowers of uncertain affinity from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas. 12 (1): 133–139. doi:10.17348/jbrit.v12.i1.923. S2CID 244509639.
  34. ^ a b c d e f g h i j k l Alexander B. Doweld (2018). "New names in Ficus (Moraceae) and Ficophyllum, living and fossil". Kew Bulletin. 73 (4): Article 48. doi:10.1007/s12225-018-9769-y. S2CID 53084786.
  35. ^ Jian Huang; Tao Su; Lin-Bo Jia; Zhe-Kun Zhou (2018). "A fossil fig from the Miocene of southwestern China: Indication of persistent deep time karst vegetation". Review of Palaeobotany and Palynology. 258: 133–145. Bibcode:2018RPaPa.258..133H. doi:10.1016/j.revpalbo.2018.07.005. S2CID 135063147.
  36. ^ Qijia Li; Yusheng (Christopher) Liu; Jianhua Jin; Cheng Quan (2018). "Late Oligocene Fissistigma (Annonaceae) leaves from Guangxi, low-latitude China and its paleoecological implications". Review of Palaeobotany and Palynology. 259: 39–47. Bibcode:2018RPaPa.259...39L. doi:10.1016/j.revpalbo.2018.09.005. S2CID 134325932.
  37. ^ a b c d Anumeha Shukla; R.C. Mehrotra; Sheikh Nawaz Ali (2018). "Early Eocene leaves of northwestern India and their response to climate change". Journal of Asian Earth Sciences. 166: 152–161. Bibcode:2018JAESc.166..152S. doi:10.1016/j.jseaes.2018.07.035. S2CID 135136503.
  38. ^ a b c d e f Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2018). "Extinct taxa of exotestal seeds close to Austrobaileyales and Nymphaeales from the Early Cretaceous of Portugal" (PDF). Fossil Imprint. 74 (1–2): 135–158. doi:10.2478/if-2018-0010. S2CID 92585432.
  39. ^ Ye-Ming Cheng; Xiao-Nan Yang; Zhe-Feng He; Bing Mao; Ya-Fang Yin (2018). "Early Miocene angiosperm woods from Sihong in the Jiangsu Province, Eastern China". IAWA Journal. 39 (1): 125–142. doi:10.1163/22941932-20170189.
  40. ^ Mahasin Ali Khan; Meghma Bera; Robert A.Spicer; Teresa E.V. Spicer; Subir Bera (2018). "Evidence of simultaneous occurrence of tylosis formation and fungal interaction in a late Cenozoic angiosperm from the eastern Himalaya". Review of Palaeobotany and Palynology. 259: 171–184. Bibcode:2018RPaPa.259..171K. doi:10.1016/j.revpalbo.2018.10.004. S2CID 135278929.
  41. ^ Maria de Jesus Hernandez-Hernández; Carlos Castañeda-Posadas (2018). "Gouania miocenica sp. nov. (Rhamnaceae), a Miocene fossil from Chiapas, México and paleobiological involvement". Journal of South American Earth Sciences. 85: 1–5. Bibcode:2018JSAES..85....1H. doi:10.1016/j.jsames.2018.04.018. S2CID 134428644.
  42. ^ Tao Su; Shu-Feng Li; He Tang; Yong-Jiang Huang; Shi-Hu Li; Cheng-Long Deng; Zhe-Kun Zhou (2018). "Hemitrapa Miki (Lythraceae) from the earliest Oligocene of southeastern Qinghai-Tibetan Plateau and its phytogeographic implications". Review of Palaeobotany and Palynology. 257: 57–63. Bibcode:2018RPaPa.257...57S. doi:10.1016/j.revpalbo.2018.06.001. S2CID 135057777.
  43. ^ Ya Li; Yi-Ming Cui; Carole T. Gee; Xiao-Qing Liang; Cheng-Sen Li (2020). "Primotrapa gen. nov., an extinct transitional genus bridging the evolutionary gap between Lythraceae and Trapoideae, from the early Miocene of North China". BMC Evolutionary Biology. 20 (1): 150. doi:10.1186/s12862-020-01697-2. PMC 7661254. PMID 33183234.
  44. ^ Gaurav Srivastava; Rakesh C. Mehrotra; David L. Dilcher (2018). "Paleocene Ipomoea (Convolvulaceae) from India with implications for an East Gondwana origin of Convolvulaceae". Proceedings of the National Academy of Sciences of the United States of America. 115 (23): 6028–6033. Bibcode:2018PNAS..115.6028S. doi:10.1073/pnas.1800626115. PMC 6003353. PMID 29784796.
  45. ^ Rafał Kowalski; Elżbieta Worobiec (2018). "Revision of Comarostaphylis globula (Ericaceae) from Cenozoic of Central Europe". Review of Palaeobotany and Palynology. 254: 20–32. Bibcode:2018RPaPa.254...20K. doi:10.1016/j.revpalbo.2018.04.009. S2CID 134162165.
  46. ^ a b Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2018). "Rightcania and Kvacekispermum: Early Cretaceous seeds from eastern North America and Portugal provide further evidence of the early chloranthoid diversification" (PDF). Fossil Imprint. 74 (1–2): 65–76. doi:10.2478/if-2018-0006. S2CID 134825530.
  47. ^ George O. Poinar Jr.; Kenton L. Chambers (2018). "Fossil flowers of Lachnociona camptostylus sp. nov., a second record for the genus in mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas. 12 (2): 655–666. doi:10.17348/jbrit.v12.i2.966. S2CID 195836349.
  48. ^ Nathan A. Jud; Maria A. Gandolfo; Ari Iglesias; Peter Wilf (2018). "Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae)". Annals of Botany. 121 (3): 431–442. doi:10.1093/aob/mcx173. PMC 5838809. PMID 29309506.
  49. ^ a b c Emilio Estrada-Ruiz; Elisabeth A. Wheeler; Garland R. Upchurch Jr.; Greg H. Mack (2018). "Late Cretaceous angiosperm woods from the McRae Formation, south-central New Mexico, USA: Part 2". International Journal of Plant Sciences. 179 (2): 136–150. doi:10.1086/695503. S2CID 90756137.
  50. ^ Camila Martínez; María A. Gandolfo; N. Rubén Cúneo (2018). "Angiosperm leaves and cuticles from the uppermost Cretaceous of Patagonia, biogeographic implications and atmospheric paleo-CO2 estimates". Cretaceous Research. 89: 107–118. Bibcode:2018CrRes..89..107M. doi:10.1016/j.cretres.2018.03.015. S2CID 135404931.
  51. ^ Atsushi Yabe; Tomio Nakagawa (2018). "A new legume fruit species from the mid-Miocene Climatic Optimum in Japan". Review of Palaeobotany and Palynology. 257: 35–42. Bibcode:2018RPaPa.257...35Y. doi:10.1016/j.revpalbo.2018.06.006. S2CID 134964695.
  52. ^ Zhong-Jian Liu; Diying Huang; Chenyang Cai; Xin Wang (2018). "The core eudicot boom registered in Myanmar amber". Scientific Reports. 8 (1): Article number 16765. Bibcode:2018NatSR...816765L. doi:10.1038/s41598-018-35100-4. PMC 6233203. PMID 30425298.
  53. ^ Junling Dong; Bainian Sun; Teng Mao; Defei Yan; Chunhui Liu; Zixi Wang; Peihong Jin (2018). "Liquidambar (Altingiaceae) and associated insect herbivory from the Miocene of southeastern China". Palaeogeography, Palaeoclimatology, Palaeoecology. 497: 11–24. Bibcode:2018PPP...497...11D. doi:10.1016/j.palaeo.2018.02.001.
  54. ^ Lu-Liang Huang; Jin Sun; Jian-Hua Jin; Cheng Quan; Alexei A. Oskolski (2018). "Litseoxylon gen. nov. (Lauraceae): The most ancient fossil angiosperm wood with helical thickenings from southeastern Asia". Review of Palaeobotany and Palynology. 258: 223–233. Bibcode:2018RPaPa.258..223H. doi:10.1016/j.revpalbo.2018.08.006. S2CID 134584129.
  55. ^ Camila Martínez (2018). "Dalbergieae (Fabaceae) samara fruits from the Late Eocene of Colombia". International Journal of Plant Sciences. 179 (7): 541–553. doi:10.1086/698937. S2CID 92370507.
  56. ^ a b María Jimena Franco (2018). "Small Celastraceae and Polygonaceae twigs from the Upper Cenozoic (Ituzaingó Formation) of the La Plata Basin, Argentina". Historical Biology: An International Journal of Paleobiology. 30 (5): 646–660. doi:10.1080/08912963.2017.1313840. S2CID 133509866.
  57. ^ a b c Nathan A. Jud; Ari Iglesias; Peter Wilf; Maria A. Gandolfo (2018). "Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina)". American Journal of Botany. 105 (5): 927–942. doi:10.1002/ajb2.1092. hdl:11336/183708. PMID 29882954.
  58. ^ Fei Liang; Ge Sun; Tao Yang; Shuchong Bai (2018). "Nelumbo jiayinensis sp. nov. from the Upper Cretaceous Yong'ancun Formation, Heilongjiang, Northeast China". Cretaceous Research. 84: 134–140. doi:10.1016/j.cretres.2017.11.007.
  59. ^ Zhongjian Liu; Xin Wang (2018). "A novel angiosperm from the Early Cretaceous and its implications for carpel-deriving". Acta Geologica Sinica (English Edition). 92 (4): 1293–1298. doi:10.1111/1755-6724.13627. S2CID 133778531.
  60. ^ Else Marie Friis; Peter R. Crane; Kaj R. Pedersen (2018). "Fossil seeds with affinities to Austrobaileyales and Nymphaeales from the Early Cretaceous (early to middle Albian) of Virginia and Maryland, USA: new evidence for extensive extinction near the base of the angiosperm tree". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 417–435. doi:10.1016/B978-0-12-813012-4.00017-6. ISBN 978-01-281-3012-4.
  61. ^ Else Marie Friis; Mário Miguel Mendes; Kaj Raunsgaard Pedersen (2018). "Paisia, an Early Cretaceous eudicot angiosperm flower with pantoporate pollen from Portugal". Grana. 57 (1–2): 1–15. doi:10.1080/00173134.2017.1310292. hdl:10400.1/11975. S2CID 89962677.
  62. ^ Yunfa Chen; Hongshan Wang; Yongqing Liufu; Qian Hu; Qiongyao Fu; Zhiming Xie (2018). "A new species of Palaeocarya (Juglandaceae) from the Ningming Basin in Guangxi, South China". Phytotaxa. 367 (1): 55–62. doi:10.11646/phytotaxa.367.1.6. S2CID 91774942.
  63. ^ Kathleen B. Pigg; Finley A. Bryan; Melanie L. DeVore (2018). "Paleoallium billgenseli gen. et sp. nov.: fossil monocot remains from the latest Early Eocene Republic Flora, northeastern Washington State, USA". International Journal of Plant Sciences. 179 (6): 477–486. doi:10.1086/697898. S2CID 91055581.
  64. ^ Jun-Ling Dong; Bai-Nian Sun; Teng Mao; Pei-Hong Jin; Zi-Xi Wang (2018). "Two samaras of Rhamnaceae from the middle Miocene of southeast China". Review of Palaeobotany and Palynology. 259: 112–122. Bibcode:2018RPaPa.259..112D. doi:10.1016/j.revpalbo.2018.09.004. S2CID 133695350.
  65. ^ a b c Samar Nour-El-Deen; Romain Thomas; Wagieh El-Saadawi (2018). "First record of fossil Trachycarpeae in Africa: three new species of Palmoxylon from the Oligocene (Rupelian) Gebel Qatrani Formation, Fayum, Egypt". Journal of Systematic Palaeontology. 16 (9): 741–766. doi:10.1080/14772019.2017.1343258. S2CID 134641364.
  66. ^ Eliana Moya; Mariana Brea; Alicia I. Lutz (2018). "Redescription and reassignment of the fossil wood Menendoxylon piptadiensis from the Pliocene Andalhuala Formation, South America". Journal of Systematic Palaeontology. 16 (13): 1145–1157. doi:10.1080/14772019.2017.1386727. S2CID 90928608.
  67. ^ a b Ünal Akkemik; Gökhan Atıcı; Imogen Poole; Mehmet Çobankaya (2018). "Three new silicified woods from a newly discovered earliest Miocene forest site in the Haymana Basin (Ankara, Turkey)". Review of Palaeobotany and Palynology. 254: 49–64. Bibcode:2018RPaPa.254...49A. doi:10.1016/j.revpalbo.2018.04.012. S2CID 134850974.
  68. ^ Gaurav Srivastava; R. C. Mehrotra; C. Srikarni (2018). "Fossil wood flora from the Siwalik Group of Arunachal Pradesh, India and its climatic and phytogeographic significance". Journal of Earth System Science. 127 (1): Article 2. Bibcode:2018JESS..127....2S. doi:10.1007/s12040-017-0903-2. S2CID 134314695.
  69. ^ Dmitry D. Sokoloff; Michael S. Ignatov; Margarita V. Remizowa; Maxim S. Nuraliev; Vladimir Blagoderov; Amin Garbout; Evgeny E. Perkovsky (2018). "Staminate flower of Prunus s. l. (Rosaceae) from Eocene Rovno amber (Ukraine)". Journal of Plant Research. 131 (6): 925–943. doi:10.1007/s10265-018-1057-2. PMID 30032395. S2CID 51708343.
  70. ^ Steven R. Manchester; Behnaz Balmaki (2018). "Spiny fruits revealed by nano-CT scanning: Pseudoanacardium peruvianum (Berry) gen. et comb. nov. from the early Oligocene Belén flora of Peru". Acta Palaeobotanica. 58 (1): 41–48. doi:10.2478/acpa-2018-0005. S2CID 134030486.
  71. ^ Friðgeir Grímsson; Guido W. Grimm; Alastair J. Potts; Reinhard Zetter; Susanne S. Renner (2018). "A Winteraceae pollen tetrad from the early Paleocene of western Greenland, and the fossil record of Winteraceae in Laurasia and Gondwana". Journal of Biogeography. 45 (3): 567–581. doi:10.1111/jbi.13154. S2CID 91077162.
  72. ^ John G. Conran; Elizabeth M. Kennedy; Jennifer M. Bannister (2018). "Early Eocene Ripogonaceae leaf macrofossils from New Zealand". Australian Systematic Botany. 31 (1): 8–15. doi:10.1071/SB17016. S2CID 90024792.
  73. ^ A.L. Hernández-Damián; S.L. Gómez-Acevedo; S.R.S. Cevallos-Ferriz (2018). "Fossil flower of Salacia lombardii sp. nov. (Salacioideae-Celastraceae) preserved in amber from Simojovel de Allende, Mexico". Review of Palaeobotany and Palynology. 252: 1–9. Bibcode:2018RPaPa.252....1H. doi:10.1016/j.revpalbo.2018.02.003.
  74. ^ George O. Poinar Jr.; Kenton L. Chambers (2018). "Setitheca lativalva gen. et sp. nov., a fossil flower of Laurales from mid-Cretaceous Myanmar amber". Journal of the Botanical Research Institute of Texas. 12 (2): 643–653. doi:10.17348/jbrit.v12.i2.964. S2CID 195836861.
  75. ^ Sandip More; Rajarshi Rit; Mahasin Ali Khan; Dipak Kumar Paruya; Suchana Taral; Tapan Chakraborty; Subir Bera (2018). "Record of leaf and pollen cf. Sloanea (Elaeocarpaceae) from the Middle Siwalik of Darjeeling sub-Himalaya, India and its palaeobiogeographic implications". Journal of the Geological Society of India. 91 (3): 301–306. doi:10.1007/s12594-018-0854-5. S2CID 134939533.
  76. ^ Maria A. Gandolfo; Kevin C. Nixon; William L. Crepet; David A. Grimaldi (2018). "A late Cretaceous fagalean inflorescence preserved in amber from New Jersey". American Journal of Botany. 105 (8): 1424–1435. doi:10.1002/ajb2.1103. PMID 29901855. S2CID 49182536.
  77. ^ Yongjiang Huang; Arata Momohara; Yuqing Wang (2018). "Selective extinction within a Tertiary relict genus in the Japanese Pleistocene explained by climate cooling and species-specific cold tolerance". Review of Palaeobotany and Palynology. 258: 1–12. Bibcode:2018RPaPa.258....1H. doi:10.1016/j.revpalbo.2018.06.009. S2CID 134792773.
  78. ^ a b c Han, M.; Manchester, S.; Fu, Q.-Y.; Jin, J.-H.; Quan, C. (2018). "Paleogene fossil fruits of Stephania (Menispermaceae) from North America and East Asia". Journal of Systematics and Evolution. 56 (2): 81–91. doi:10.1111/jse.12288. S2CID 90749898.
  79. ^ Manchester, S.R. (1994). "Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon". Palaeontographica Americana. 58: 30–31.
  80. ^ Bruce H. Tiffney; Steven R. Manchester; Peter W. Fritsch (2018). "Two new species of Symplocos based on endocarps from the early Miocene Brandon Lignite of Vermont, USA". Acta Palaeobotanica. 58 (2): 185–198. doi:10.2478/acpa-2018-0008. S2CID 134618908.
  81. ^ Myall Tarran; Peter G. Wilson; Rosemary Paull; Ed Biffin; Robert S. Hill (2018). "Identifying fossil Myrtaceae leaves: the first described fossils of Syzygium from Australia". American Journal of Botany. 105 (10): 1748–1759. doi:10.1002/ajb2.1163. PMID 30276795. S2CID 52901156.
  82. ^ Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2018). "Tanispermum, a new genus of hemi‐orthotropous to hemi‐anatropous angiosperm seeds from the Early Cretaceous of eastern North America". American Journal of Botany. 105 (8): 1369–1388. doi:10.1002/ajb2.1124. PMID 30080239. S2CID 51920598.
  83. ^ William L. Crepet; Kevin C. Nixon; Andrea Weeks (2018). "Mid‐Cretaceous angiosperm radiation and an asterid origin of bilaterality: diverse and extinct "Ericales" from New Jersey". American Journal of Botany. 105 (8): 1412–1423. doi:10.1002/ajb2.1131. PMID 30075046. S2CID 51910883.
  84. ^ L. B. Golovneva; A. A. Zolina (2018). "Fossil evidence of initial radiation of Cercidiphyllaceae". Paleobotanika. 9: 54–75. doi:10.31111/palaeobotany/2018.9.54. ISSN 2218-7235.
  85. ^ a b Qiu-Yue Zhang; Jian Huang; Lin-Bo Jia; Tao Su; Zhe-Kun Zhou; Yao-Wu Xing (2018). "Miocene Ulmus fossil fruits from Southwest China and their evolutionary and biogeographic implications". Review of Palaeobotany and Palynology. 259: 198–206. Bibcode:2018RPaPa.259..198Z. doi:10.1016/j.revpalbo.2018.10.007. S2CID 135184883.
  86. ^ N. I. Blokhina; O. V. Bondarenko (2018). "Fossil wood of Ulmus priamurica sp. nov. (Ulmaceae) from the Miocene of the Erkovetskii Brown Coal Field, Amur Region, Russia". Paleontological Journal. 52 (2): 208–218. doi:10.1134/S003103011802003X. S2CID 90347236.
  87. ^ Xiao-Qing Liang; Ping Lu; Jian-Wei Zhang; Tao Su; Zhe-Kun Zhou (2018). "First fossils of Zygogynum from the Middle Miocene of Central Yunnan, Southwest China, and their palaeobiogeographic significance". Palaeoworld. 27 (3): 399–409. doi:10.1016/j.palwor.2018.05.003. S2CID 135342481.
  88. ^ Ignacio H. Escapa; Ari Iglesias; Peter Wilf; Santiago A. Catalano; Marcos A. Caraballo‐Ortiz; N. Rubén Cúneo (2018). "Agathis trees of Patagonia's Cretaceous‐Paleogene death landscapes and their evolutionary significance". American Journal of Botany. 105 (8): 1345–1368. doi:10.1002/ajb2.1127. hdl:11336/87592. PMID 30074620. S2CID 51908977.
  89. ^ M. Philippe; M. Rioult; J.-Ph. Rioult; F. Thévenard (2018). "A reappraisal of Lignier's Mesozoic fossil wood collection: Ages, nomenclature and taxonomy". Review of Palaeobotany and Palynology. 252: 10–19. Bibcode:2018RPaPa.252...10P. doi:10.1016/j.revpalbo.2018.02.001.
  90. ^ a b c d Stănilă Iamandei; Eugenia Iamandei; Eugen Grădinaru (2018). "Contributions to the study of the Early Jurassic petrified forest of Holbav and Cristian areas (Brașov region, South Carpathians, Romania). 1st part". Acta Palaeontologica Romaniae. 14 (2): 3–34.
  91. ^ Adriana C. Kloster; Silvia C. Gnaedinger (2018). "Coniferous wood of Agathoxylon from the La Matilde Formation, (Middle Jurassic), Santa Cruz, Argentina". Journal of Paleontology. 92 (4): 546–567. Bibcode:2018JPal...92..546K. doi:10.1017/jpa.2017.145. hdl:11336/91290. S2CID 134153671.
  92. ^ Ana Andruchow‐Colombo; Ignacio H. Escapa; N. Rubén Cúneo; María A. Gandolfo (2018). "Araucaria lefipanensis (Araucariaceae), a new species with dimorphic leaves from the Late Cretaceous of Patagonia, Argentina". American Journal of Botany. 105 (6): 1067–1087. doi:10.1002/ajb2.1113. PMID 29995329. S2CID 51618501.
  93. ^ Rafael Souza Faria; Fresia Ricardi-Branco; Rosemarie Rohn; Marcelo Adorna Fernandes; Isabel Christiano-De-Souza (2018). "Permian woods with preserved primary structures from the southeast of Brazil (Irati Formation, Paraná basin)". Palaeobiodiversity and Palaeoenvironments. 98 (3): 385–401. doi:10.1007/s12549-018-0320-9. hdl:11449/176067. S2CID 134655745.
  94. ^ Ning Tian; Zhi-Peng Zhu; Yong-Dong Wang; Si-Cong Wang (2018). "Occurrence of Brachyoxylon Hollick et Jeffrey from the Lower Cretaceous of Zhejiang Province, southeastern China". Journal of Palaeogeography. 7 (1): Article 8. doi:10.1186/s42501-018-0008-0. S2CID 52834161.
  95. ^ Brian A. Atkinson; Rudolph Serbet; Timothy J. Hieger; Edith L. Taylor (2018). "Additional evidence for the Mesozoic diversification of conifers: Pollen cone of Chimaerostrobus minutus gen. et sp. nov. (Coniferales), from the Lower Jurassic of Antarctica". Review of Palaeobotany and Palynology. 257: 77–84. Bibcode:2018RPaPa.257...77A. doi:10.1016/j.revpalbo.2018.06.013. S2CID 133732087.
  96. ^ Wen-Na Ding; Lutz Kunzmann; Tao Su; Jian Huang; Zhe-Kun Zhou (2018). "A new fossil species of Cryptomeria (Cupressaceae) from the Rupelian of the Lühe Basin, Yunnan, East Asia: Implications for palaeobiogeography and palaeoecology". Review of Palaeobotany and Palynology. 248: 41–51. Bibcode:2018RPaPa.248...41D. doi:10.1016/j.revpalbo.2017.09.003.
  97. ^ Tatiana Kodrul; Natalia Gordenko; Aleksandra Sokolova; Natalia Maslova; Xinkai Wu; Jianhua Jin (2018). "A new Oligocene species of Cunninghamia R. Brown ex Richard et A. Richard (Cupressaceae) from the Maoming Basin, South China". Review of Palaeobotany and Palynology. 258: 234–247. Bibcode:2018RPaPa.258..234K. doi:10.1016/j.revpalbo.2018.09.003. S2CID 134577533.
  98. ^ a b c d e f g h i Valeria S. Perez Loinaze; Magdalena Llorens (2018). "Palynology of the Baqueró Group (upper Aptian), Patagonia Argentina: An integrated study". Cretaceous Research. 86: 219–237. Bibcode:2018CrRes..86..219P. doi:10.1016/j.cretres.2018.02.004. S2CID 133840202.
  99. ^ Pei-Hong Jin; Jun-Ling Dong; Zi-Xi Wang; Xiu-Cai Yuan; Yi-Fan Hua; Bao-Xia Du; Bai-Nian Sun (2018). "A new species of Elatides from the Lower Cretaceous in Shandong province, Eastern China and its geographic significance". Cretaceous Research. 85: 109–127. Bibcode:2018CrRes..85..109J. doi:10.1016/j.cretres.2017.11.022.
  100. ^ a b Amit K. Ghosh; Ratan Kar; Reshmi Chatterjee; Arindam Chakraborty; Jayasri Banerji (2018). "Two new conifers from the Early Cretaceous of the Rajmahal Basin, India: implications on palaeoecology and phytogeography". Ameghiniana. 55 (4): 437–450. doi:10.5710/AMGH.17.02.2018.3124. S2CID 134437542.
  101. ^ Ana Andruchow-Colombo; Ignacio H. Escapa; Raymond J. Carpenter; Robert S. Hill; Ari Iglesias; Ana M. Abarzua; Peter Wilf (2018). "Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina". Alcheringa. 43: 127–145. doi:10.1080/03115518.2018.1517222. S2CID 133852107.
  102. ^ N.V. Nosova; A.I. Kiritchkova (2018). "A new species of Marskea Florin (Pinopsida) from the Middle Jurassic of the Irkutsk Coal Basin (East Siberia)". Paleontological Journal. 52 (5): 574–581. doi:10.1134/S0031030118050106. S2CID 91309728.
  103. ^ Ruth A. Stockey; Nicholas J. P. Wiebe; Brian A. Atkinson; Gar W. Rothwell (2018). "Cupressaceous pollen cones from the Early Cretaceous of Vancouver Island, British Columbia: Morinostrobus holbergensis gen. et sp. nov". International Journal of Plant Sciences. 179 (5): 402–414. doi:10.1086/697728. S2CID 89890930.
  104. ^ Mahasin Ali Khan; Subir Bera (2018). "Pinus daflaensis (Pinaceae), a replacement name for P. arunachalensis Khan & Bera". Phytotaxa. 334 (2): 200. doi:10.11646/phytotaxa.334.2.9.
  105. ^ a b Alma R. Huerta Vergara; Sergio R.S. Cevallos-Ferriz (2018). "Vegetative and reproductive organs of Late Cretaceous Pinus spp. from Esqueda, Sonora, Mexico". Review of Palaeobotany and Palynology. 259: 134–141. Bibcode:2018RPaPa.259..134H. doi:10.1016/j.revpalbo.2018.10.003. S2CID 134939869.
  106. ^ a b c d e Alexander B. Doweld (2018). "New names of fossil Pinus and Pinuspollenites (Pinaceae) of Northern Eurasia". The Journal of Japanese Botany. 93 (3): 215–219.
  107. ^ Wenlong He; Liang Xiao; Xiangchuan Li; Shuangxing Guo (2018). "An ancient example of Platycladus (Cupressceae) from the early Miocene of northern China: origin and biogeographical implications". Historical Biology: An International Journal of Paleobiology. 30 (8): 1123–1131. doi:10.1080/08912963.2017.1339038. S2CID 89824036.
  108. ^ a b Yujin Zhang; Ning Tian; Zhipeng Zhu; Yongdong Wang; Xinwei Wu; Zhibin Zhang; Chao Zhang; Qiuliang Si; Yongfei Ma (2018). "Two new species of Protocedroxylon Gothan (Pinaceae) from the Middle Jurassic of Eastern Inner Mongolia, NE China". Acta Geologica Sinica (English Edition). 92 (5): 1685–1699. doi:10.1111/1755-6724.13671. S2CID 134790757.
  109. ^ Maria Edenilce P. Batista; Lutz Kunzmann; Francisco Irineudo Bezerra; José Artur F.G. de Andrade; Artur A. Sá; Maria Iracema B. Loiola (2018). "A new cheirolepidiaceous conifer Pseudofrenelopsis salesii sp. nov. from the Early Cretaceous of Brazil (Romualdo Formation, Araripe Basin): Paleoecological and taphonomic significance". Review of Palaeobotany and Palynology. 258: 154–162. Bibcode:2018RPaPa.258..154B. doi:10.1016/j.revpalbo.2018.08.002. S2CID 135185679.
  110. ^ Jiří Kvaček; Eduardo Barrón; Zuzana Heřmanová; Mário Miguel Mendes; Jakub Karch; Jan Žemlička; Jan Dudák (2018). "Araucarian conifer from late Albian amber of northern Spain". Papers in Palaeontology. 4 (4): 643–656. doi:10.1002/spp2.1223. S2CID 134837045.
  111. ^ Long Li; Jian-Hua Jin; Steven R. Manchester (2018). "Cupressaceae fossil remains from the Paleocene of Carneyville, Wyoming". Review of Palaeobotany and Palynology. 251: 1–13. Bibcode:2018RPaPa.251....1L. doi:10.1016/j.revpalbo.2017.12.003. S2CID 133717549.
  112. ^ Ning Tian; Zhipeng Zhu; Yongdong Wang; Marc Philippe; Chunyong Chou; Aowei Xie (2018). "Sequoioxylon zhangii sp. nov. (Sequoioideae, Cupressaceae s.l.), a new coniferous wood from the Upper Cretaceous in Heilongjiang Province, Northeastern China". Review of Palaeobotany and Palynology. 257: 85–94. Bibcode:2018RPaPa.257...85T. doi:10.1016/j.revpalbo.2018.07.008. S2CID 135269271.
  113. ^ a b c d e f g h Andrey O. Frolov; Irina M. Mashchuk (2018). Jurassic flora and vegetation of the Irkutsk Coal Basin. V.B. Sochava Institute of Geography SB RAS Publishers. pp. 1–541. ISBN 978-5-94797-328-0.
  114. ^ Xiao Tan; David L. Dilcher; Hongshan Wang; Yi Zhang; Yu-Ling Na; Tao Li; Yun-Feng Li; Chun-Lin Sun (2018). "Yanliaoa, an extinct genus of Cupressaceae s. l. from the Middle Jurassic, northeastern China". Palaeoworld. 27 (3): 360–373. doi:10.1016/j.palwor.2018.03.001. S2CID 134801054.
  115. ^ Le Liu; De-Ming Wang; Mei-Cen Meng; Pu Huang; Jin-Zhuang Xue (2018). "A new seed plant with multi-ovulate cupules from the Upper Devonian of South China". Review of Palaeobotany and Palynology. 249: 80–86. Bibcode:2018RPaPa.249...80L. doi:10.1016/j.revpalbo.2017.11.006.
  116. ^ a b c d Zbyněk Šimůnek (2018). "Cuticular analysis of new Westphalian and Stephanian Cordaites species from the USA". Review of Palaeobotany and Palynology. 253: 1–14. Bibcode:2018RPaPa.253....1S. doi:10.1016/j.revpalbo.2018.03.001. S2CID 135323969.
  117. ^ a b c d e f Stephen McLoughlin; Christian Pott; Ian H. Sobbe (2018). "The diversity of Australian Mesozoic bennettitopsid reproductive organs". Palaeobiodiversity and Palaeoenvironments. 98 (1): 71–95. doi:10.1007/s12549-017-0286-z. S2CID 135237376.
  118. ^ a b c À.I Kiritchkova; E.I. Kostina; N.V. Nosova (2018). "Jurassic flora of the Irkutsk coal basin". Botanicheskii Zhurnal. 103 (1): 36–63.
  119. ^ Yong Yang; Longbiao Lin; David K. Ferguson; Yingwei Wang (2018). "Macrofossil evidence unveiling evolution of male cones in Ephedraceae (Gnetidae)". BMC Evolutionary Biology. 18 (1): 125. doi:10.1186/s12862-018-1243-9. PMC 6116489. PMID 30157769.
  120. ^ Yun-Feng Li; Chun-Lin Sun; Hongshan Wang; David L. Dilcher; Xiao Tan; Tao Li; Yu-Ling Na (2018). "First record of Eretmophyllum (Ginkgoales) with well-preserved cuticle from the Middle Jurassic of the Ordos Basin, Inner Mongolia, China". Palaeoworld. 27 (2): 188–201. doi:10.1016/j.palwor.2017.09.002. S2CID 135110777.
  121. ^ a b c Chun-Lin Sun; Xiao Tan; David L. Dilcher; Hongshan Wang; Yu-Ling Na; Tao Li; Yun-Feng Li (2018). "Middle Jurassic Ginkgo leaves from the Daohugou area, Inner Mongolia, China and their implication for palaeo-CO2 reconstruction". Palaeoworld. 27 (4): 467–481. doi:10.1016/j.palwor.2018.09.005. S2CID 134358537.
  122. ^ Andrey O. Frolov; Irina M. Mashchuk (2022). "New Discoveries and New Combinations of the Fossil-genus Ginkgoites Seward (Ginkgoales) from the Lower and Middle Jurassic of East Siberia (Russia)". Phytotaxa. 567 (1): 49–60. doi:10.11646/phytotaxa.567.1.4. S2CID 252650745.
  123. ^ A.V. Gomankov (2018). "Rhipidopsis-like leaves in the Upper Permian of the Russian Platform and some evolutionary lineages in Ginkgoopsida" (PDF). Paleobotanicheskii Vremennik. Prilozhenie K Zhurnalu "Lethaea Rossica". 3: 41–49.
  124. ^ a b Zixi Wang; Bainian Sun; Fankai Sun; Conghui Xiong; Yingquan Chen; Xuelian Wang (2018). "Microstructure and significance of cordaitean reproductive organs from the lower Permian of Gansu, Northwest China". Journal of Asian Earth Sciences. 158: 49–64. Bibcode:2018JAESc.158...49W. doi:10.1016/j.jseaes.2018.02.016. S2CID 134097850.
  125. ^ Ana María Zavattieri; Pedro Raúl Gutiérrez; Miguel Ezpeleta (2018). "Gymnosperm pollen grains from the La Veteada Formation (Lopingian), Paganzo Basin, Argentina: biostratigraphic and palaeoecological implications". Alcheringa: An Australasian Journal of Palaeontology. 42 (2): 276–299. doi:10.1080/03115518.2017.1410571. S2CID 133757522.
  126. ^ a b Qiang Fu; Jose Bienvenido Diez; Mike Pole; Manuel García Ávila; Zhong-Jian Liu; Hang Chu; Yemao Hou; Pengfei Yin; Guo-Qiang Zhang; Kaihe Du; Xin Wang (2018). "An unexpected noncarpellate epigynous flower from the Jurassic of China". eLife. 7: e38827. doi:10.7554/eLife.38827. PMC 6298773. PMID 30558712.
  127. ^ Mario Coiro; James A. Doyle; Jason Hilton (2019). "How deep is the conflict between molecular and fossil evidence on the age of angiosperms?" (PDF). New Phytologist. 223 (1): 83–99. doi:10.1111/nph.15708. PMID 30681148. S2CID 59250674.
  128. ^ a b Yi Zhao; Shenghui Deng; Ping Shang; Qin Leng; Yuanzheng Lu; Guobin Fu; Xueying Ma (2018). "Two new species of Nilssoniopteris (Bennettitales) from the Middle Jurassic of Sandaoling, Turpan-Hami Basin, Xinjiang, NW China". Journal of Paleontology. 92 (4): 525–545. Bibcode:2018JPal...92..525Z. doi:10.1017/jpa.2017.133. S2CID 134658701.
  129. ^ Yi Zhao; Yuanzheng Lu; Ping Shang; Shenghui Deng; Xunlian Wang (2018). "An amended species, Nilssoniopteris neimenguensis nom. nov., from the Lower Jurassic of the Xilinhot Basin, Inner Mongolia, northern China, with a reexamination of Nilssoniopteris species". Review of Palaeobotany and Palynology. 255: 22–34. Bibcode:2018RPaPa.255...22Z. doi:10.1016/j.revpalbo.2018.04.013. S2CID 134961715.
  130. ^ a b Fabiany Herrera; Gongle Shi; Gombosuren Tsolmon; Niiden Ichinnorov; Masamichi Takahashi; Peter R. Crane; Patrick S. Herendeen (2018). "Exceptionally well-preserved Early Cretaceous leaves of Nilssoniopteris from central Mongolia". Acta Palaeobotanica. 58 (2): 135–157. doi:10.2478/acpa-2018-0016. S2CID 135266923.
  131. ^ Toshihiro Yamada; Julien Legrand; Harufumi Nishida (2018). "Late Early Cretaceous (Albian) Sasayama flora from the Sasayama Group in Hyogo Prefecture, Japan". Paleontological Research. 22 (2): 112–128. doi:10.2517/2017PR014. S2CID 134386883.
  132. ^ S.V. Naugolnykh (2018). "Ecology and paleoecology in context of geomonitoring aims as exemplified by the City of Krasnoufimsk (Sverdlovsk region)". Socialno-ecologicheskie Technologii. 2018 (1): 38–64. doi:10.31862/2500-2963-2018-1-38-64.
  133. ^ Stephen McLoughlin; Benjamin Bomfleur; Andrew N. Drinnan (2018). "Pachytestopsis tayloriorum gen. et sp. nov., an anatomically preserved glossopterid seed from the Lopingian of Queensland, Australia". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 155–178. doi:10.1016/B978-0-12-813012-4.00009-7. ISBN 978-01-281-3012-4.
  134. ^ A. O. Frolov; I. M. Mashchuk (2018). "A new species of the genus Phoenicopsis (Leptostrobales) from the Middle Jurassic of the Irkutsk Basin (Eastern Siberia)". Paleontological Journal. 52 (4): 463–468. doi:10.1134/S0031030118040068. S2CID 92483140.
  135. ^ a b c Gongle Shi; Fabiany Herrera; Patrick S. Herendeen; Andrew B. Leslie; Niiden Ichinnorov; Masamichi Takahashi; Peter R. Crane (2018). "Leaves of Podozamites and Pseudotorellia from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships". Journal of Systematic Palaeontology. 16 (2): 111–137. doi:10.1080/14772019.2016.1274343. S2CID 90523531.
  136. ^ a b Natalya Nosova; Lina Golovneva (2018). "Phoenicopsis (Leptostrobales) and Pseudotorellia (Ginkgoales) from the Cretaceous of North Asia". Cretaceous Research. 86: 149–162. Bibcode:2018CrRes..86..149N. doi:10.1016/j.cretres.2018.03.001. S2CID 134427457.
  137. ^ a b Anastasia A. Gnilovskaya; Lina B. Golovneva (2018). "The Late Cretaceous Pterophyllum (Bennettitales) in the North-East of Russia". Cretaceous Research. 82: 56–63. Bibcode:2018CrRes..82...56G. doi:10.1016/j.cretres.2017.09.013.
  138. ^ Bárbara Cariglino; Mariana Monti; Ana María Zavattieri (2018). "A Middle Triassic macroflora from southwestern Gondwana (Mendoza, Argentina) with typical Northern Hemisphere elements: Biostratigraphic, palaeogeographic and palaeoenvironmental implications". Review of Palaeobotany and Palynology. 257: 1–18. Bibcode:2018RPaPa.257....1C. doi:10.1016/j.revpalbo.2018.06.004. S2CID 134353650.
  139. ^ A.V. Gomankov (2018). "New species of Rufloria S. Meyen (Cordaitanthales, Rufloriaceae) and its significance for the stratigraphy of the Angaran Permian" (PDF). Lethaea Rossica. 16: 23–32.
  140. ^ Tao Yang; Fei Liang; Shu-chong Bai; Xiao-rong Guo (2018). "New discovery of Solenites (Czekanowskialean) from Upper Triassic Haojiagou Formation in Urumqi, Xinjiang". Global Geology. 37 (1): 1–8. doi:10.3969/j.issn.1004-5589.2018.01.001.
  141. ^ Giuseppa Forte; Evelyn Kustatscher; Johanna H.A. van Konijnenburg-van Cittert; Hans Kerp (2018). "Sphenopterid diversity in the Kungurian of Tregiovo (Trento, NE-Italy)". Review of Palaeobotany and Palynology. 252: 64–76. Bibcode:2018RPaPa.252...64F. doi:10.1016/j.revpalbo.2018.02.006.
  142. ^ N. V. Gordenko; A. V. Broushkin (2018). "Ovuliferous organs of Trisquamales Gordenko et Broushkin ordo. nov. (Gymnospermae) from the Middle Jurassic of the Kursk Region, European Russia". Paleontological Journal. 52 (1): 90–107. doi:10.1134/S0031030118010082. S2CID 90790977.
  143. ^ L.C.A. Martínez; E.G. Ottone; A.E. Artabe (2018). "A new cycad trunk from the Palaeocene in the Neuquén Basin, Patagonia (Argentina)". Review of Palaeobotany and Palynology. 256: 1–12. Bibcode:2018RPaPa.256....1M. doi:10.1016/j.revpalbo.2018.05.006. S2CID 133628293.
  144. ^ Boglárka Erdei; Michael Calonje; Austin Hendy; Nicolas Espinoza (2018). "A review of the Cenozoic fossil record of the genus Zamia L. (Zamiaceae, Cycadales) with recognition of a new species from the late Eocene of Panama - evolution and biogeographic inferences". Bulletin of Geosciences. 93 (2): 185–204. doi:10.3140/bull.geosci.1671. S2CID 134577832.
  145. ^ Pedro Correia; Zbynĕk Šimůnek; Artur A. Sá; Deolinda Flores (2018). "A new Late Pennsylvanian floral assemblage from the Douro Basin, Portugal". Geological Journal. 53 (6): 2507–2531. doi:10.1002/gj.3086. S2CID 134475039.
  146. ^ a b c Dianne Edwards; Cheng-Sen Li (2018). "Diversity in affinities of plants with lateral sporangia from the Lower Devonian of Sichuan Province, China" (PDF). Review of Palaeobotany and Palynology. 258: 98–111. Bibcode:2018RPaPa.258...98E. doi:10.1016/j.revpalbo.2018.07.002. S2CID 135201524.
  147. ^ a b c Sol Noetinger; Mercedes di Pasquo; Daniel Starck (2018). "Middle-Upper Devonian palynofloras from Argentina, systematic and correlation". Review of Palaeobotany and Palynology. 257: 95–116. Bibcode:2018RPaPa.257...95N. doi:10.1016/j.revpalbo.2018.07.009. S2CID 134590587.
  148. ^ a b c Ulla Kaasalainen; Jochen Heinrichs; Matthew A. M. Renner; Lars Hedenäs; Alfons Schäfer-Verwimp; Gaik Ee Lee; Michael S. Ignatov; Jouko Rikkinen; Alexander R. Schmidt (2018). "A Caribbean epiphyte community preserved in Miocene Dominican amber". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 107 (2–3): 321–331. doi:10.1017/S175569101700010X. hdl:10138/234078. S2CID 134335842.
  149. ^ Fayao Chen; Xiao Shi; Jianxin Yu; Hongfei Chi; Jun Zhu; Hui Li; Cheng Huang (2018). "Permineralized calamitean axes from the Upper Permian of Xinjiang, Northwest China and its paleoecological implication". Journal of Earth Science. 29 (2): 237–244. doi:10.1007/s12583-017-0941-3. S2CID 133735122.
  150. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai Heidi M. Anderson; John M. Anderson (2018). "Molteno sphenophytes: Late Triassic biodiversity in southern Africa". Palaeontologia Africana. 53: 1–391. hdl:10539/24672.
  151. ^ Facundo De Benedetti; María del C. Zamaloa; María A. Gandolfo; Néstor Rubén Cúneo (2018). "Heterosporous ferns From Patagonia: the case of Azolla". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 361–373. doi:10.1016/B978-0-12-813012-4.00015-2. ISBN 978-01-281-3012-4.
  152. ^ a b c d Dianne Edwards; Cheng-Sen Li (2018). "Further insights into the Lower Devonian terrestrial vegetation of Sichuan Province, China" (PDF). Review of Palaeobotany and Palynology. 253: 37–48. Bibcode:2018RPaPa.253...37E. doi:10.1016/j.revpalbo.2018.03.004. S2CID 85457662.
  153. ^ a b c d e Pedro R. Gutiérrez; M. Lucía Balarino (2018). "The palynology of the Ordóñez Formation (Pennsylvanian) in the Chacoparaná Basin, northern Argentina". Acta Palaeobotanica. 58 (1): 3–26. doi:10.2478/acpa-2018-0002. S2CID 134158465.
  154. ^ Jochen Heinrichs; Alfons Schäfer-Verwimp; Matthew A. M. Renner; Kathrin Feldberg (2018). "Cheilolejeunea lamyi sp. nov., a fossil Lejeuneaceae from Miocene Dominican amber". Cryptogamie, Bryologie. 39 (2): 155–161. doi:10.7872/cryb/v39.iss2.2018.155. S2CID 90214270.
  155. ^ Milan Libertín; Jiří Kvaček; Jiří Bek; Viktor Žárský; Petr Štorch (2018). "Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous". Nature Plants. 4 (5): 269–271. doi:10.1038/s41477-018-0140-y. PMID 29725100. S2CID 19151297.
  156. ^ Jerald B. Pinson; Steven R. Manchester; Emily B. Sessa (2018). "Culcita remberi sp. nov., an understory fern of Cyatheales from the Miocene of northern Idaho". International Journal of Plant Sciences. 179 (8): 635–639. doi:10.1086/698938. S2CID 51998343.
  157. ^ Josefina Bodnar; Juan Martín Drovandi; Eduardo Manuel Morel; Daniel Gustavo Ganuza (2018). "Middle Triassic dipterid ferns from west-central Argentina and their relationship to palaeoclimatic changes". Acta Palaeontologica Polonica. 63 (2): 397–416. doi:10.4202/app.00459.2018. S2CID 54953430.
  158. ^ Christian Pott; Johannes M. Bouchal; Thereis Y.S. Choo; Rihab Yousif; Benjamin Bomfleur (2018). "Ferns and fern allies from the Carnian (Upper Triassic) of Lunz am See, Lower Austria: A melting pot of Mesozoic fern vegetation". Palaeontographica Abteilung B. 297 (1–6): 1–101. Bibcode:2018PalAB.297....1P. doi:10.1127/palb/2018/0059.
  159. ^ Kelly C. Pfeiler; Alexandru M. F. Tomescu (2018). "An Early Devonian permineralized rhyniopsid from the Battery Point Formation of Gaspé (Canada)". Botanical Journal of the Linnean Society. 187 (2): 292–302. doi:10.1093/botlinnean/boy011.
  160. ^ Jennifer L. Morris; Dianne Edwards; John B. Richardson (2018). "The advantages and frustrations of a plant Lagerstätte as illustrated by a new taxon from the Lower Devonian of the Welsh Borderland, UK". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 49–67. doi:10.1016/B978-0-12-813012-4.00004-8. ISBN 978-01-281-3012-4.
  161. ^ a b Charles H. Wellman (2018). "The classic Lower Devonian plant-bearing deposits of northern New Brunswick, eastern Canada: dispersed spore taxonomy and biostratigraphy" (PDF). Review of Palaeobotany and Palynology. 249: 24–49. Bibcode:2018RPaPa.249...24W. doi:10.1016/j.revpalbo.2017.11.003.
  162. ^ Victoria J. García Muro; Claudia V. Rubinstein; Philippe Steemans (2018). "Late Silurian palynomorphs from the Precordillera of San Juan, Argentina: Diversity, palaeoenvironmental, and palaeogeographic significance". Acta Palaeontologica Polonica. 63 (1): 41–61. doi:10.4202/app.00400.2017. hdl:11336/86935. S2CID 46636074.
  163. ^ Gar W. Rothwell; Michael A. Millay; Ruth A. Stockey (2018). "Escapia gen. nov.: morphological evolution, paleogeographic diversification, and the environmental distribution of marattialean ferns through time". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 271–360. doi:10.1016/B978-0-12-813012-4.00014-0. ISBN 978-01-281-3012-4.
  164. ^ Ioan I. Bucur; Kamal Haji Karim; Hyam Daoud; Bruno Granier; Polla Azad Khanaqa (2018). "A new organ-species dasycladalean green alga from Darbandikhan, Kurdistan, Iraq". Arabian Journal of Geosciences. 11 (17): Article 484. doi:10.1007/s12517-018-3840-8. S2CID 134502574.
  165. ^ Kathrin Feldberg; Alina S. Müller; Alfons Schäfer-Verwimp; Matt von Konrat; Alexander R. Schmidt; Jochen Heinrichs (2018). "Frullania grabenhorstii sp. nov., a fossil liverwort (Jungermanniopsida: Frullaniaceae) with perianth from Bitterfeld amber". Bryophyte Diversity and Evolution. 40 (2): 91–103. doi:10.11646/bde.40.2.7. S2CID 92419804.
  166. ^ Yuriy S. Mamontov; Michael S. Ignatov; Evgeny E. Perkovsky (2018). "Hepatics from Rovno amber (Ukraine), 7. Frullania zerovii, sp. nov". Nova Hedwigia. 106 (1–2): 103–113. doi:10.1127/nova_hedwigia/2017/0446.
  167. ^ Tomoyuki Katagiri (2018). "Geocalyx heinrichsii sp. nov., the first representative of Geocalycaceae (Jungermanniales, Marchantiophyta) in Baltic amber". Bryophyte Diversity and Evolution. 40 (2): 113–117. doi:10.11646/bde.40.2.9. S2CID 92217722.
  168. ^ Ning Tian; Yong-Dong Wang; Wu Zhang; Shao-Lin Zheng; Zhi-Peng Zhu; Zhong-Jian Liu (2018). "Permineralized osmundaceous and gleicheniaceous ferns from the Jurassic of Inner Mongolia, NE China". Palaeobiodiversity and Palaeoenvironments. 98 (1): 165–176. doi:10.1007/s12549-017-0313-0. S2CID 134149095.
  169. ^ Dieter Uhl; Markus Poschmann (2018). "Groenlandia pescheri sp. nov. (Potamogetonaceae) from the Late Oligocene Fossil-Lagerstätte Enspel (Westerwald, Germany)". Acta Palaeobotanica. 58 (1): 61–72. doi:10.2478/acpa-2018-0001. S2CID 135254198.
  170. ^ Ye-Ming Cheng; Xiao-Nan Yang (2018). "A new tree fern stem, Heilongjiangcaulis keshanensis gen. et sp. nov., from the Cretaceous of the Songliao Basin, Northeast China: a representative of early Cyatheaceae". Historical Biology: An International Journal of Paleobiology. 30 (4): 518–530. doi:10.1080/08912963.2017.1301445. S2CID 90771901.
  171. ^ Ledis Regalado; Alexander R. Schmidt; Michael Krings; Julia Bechteler; Harald Schneider; Jochen Heinrichs (2018). "Fossil evidence of eupolypod ferns in the mid-Cretaceous of Myanmar". Plant Systematics and Evolution. 304 (1): 1–13. doi:10.1007/s00606-017-1439-2. S2CID 21617872.
  172. ^ a b Heinrich Winterscheid; Zlatko Kvaček; Jiří Váña; Michael S. Ignatov (2018). "Systematic-taxonomic revision of the flora from the late Oligocene Fossillagerstätte Rott near Bonn (Germany). Part 1: Introduction; Bryidae, Polypodiidae, and Pinidae". Palaeontographica Abteilung B. 297 (1–6): 103–141. Bibcode:2018PalAB.297..103W. doi:10.1127/palb/2018/0058. S2CID 134350523.
  173. ^ Bruno Granier (2018). "A new and unique bodyplan in fossil Bryopsidales, with description of Jaffrezocodium bipennatus n. gen., n. sp., an ( ?) Albian-Cenomanian calcareous green alga". Cretaceous Research. 85: 207–213. Bibcode:2018CrRes..85..207G. doi:10.1016/j.cretres.2018.01.011.
  174. ^ Jean Galtier; Carla J. Harper; Ronny Rößler; Evelyn Kustatscher; Michael Krings (2018). "Enigmatic, structurally preserved stems from the Triassic of Central Europe: a fern or not a fern?". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 187–209. doi:10.1016/B978-0-12-813012-4.00011-5. ISBN 978-01-281-3012-4.
  175. ^ R.W. Gess; C. Prestianni (2018). "Kowieria alveoformis gen. nov. sp. nov., a new heterosporous lycophyte from the Latest Devonian of Southern Africa" (PDF). Review of Palaeobotany and Palynology. 249: 1–8. Bibcode:2018RPaPa.249....1G. doi:10.1016/j.revpalbo.2017.10.002.
  176. ^ Philippe Gerrienne; Borja Cascales-Minana; Cyrille Prestianni; Philippe Steemans; Li Cheng-Sen (2018). "Lilingostrobus chaloneri gen. et sp. nov., a Late Devonian woody lycopsid from Hunan, China". PLOS ONE. 13 (7): e0198287. Bibcode:2018PLoSO..1398287G. doi:10.1371/journal.pone.0198287. PMC 6050970. PMID 29995908.
  177. ^ Emilio Estrada-Ruiz; Naylet K. Centeno-González; Felisa Aguilar-Arellano; Hugo I. Martínez-Cabrera (2018). "New record of the aquatic fern Marsilea, from the Olmos Formation (Upper Campanian), Coahuila, Mexico". International Journal of Plant Sciences. 179 (6): 487–496. doi:10.1086/697729. S2CID 90429663.
  178. ^ Natalia Zavialova; David J. Batten (2018). "Species of the water-fern megaspore genus Molaspora from a Cenomanian deposit in western France: occurrence, sporoderm ultrastructure and evolutionary relationships". Grana. 57 (5): 325–344. doi:10.1080/00173134.2017.1417475. S2CID 90852432.
  179. ^ Baba Senowbari-Daryan (2018). "Algae (Dasycladales) from the Upper Triassic Nayband Formation (northeast Iran)". Geopersia. 8 (1): 35–42. doi:10.22059/geope.2017.235449.648331.
  180. ^ San-Ping Xie; Si-Hang Zhang; Tian-Yu Chen; Xian-Chun Zhang; Xu Zeng; Yang Yu (2018). "Late Miocene occurrence of monogeneric family Oleandraceae from southwest China and its implications on evolution of eupolypods I". Review of Palaeobotany and Palynology. 256: 13–19. Bibcode:2018RPaPa.256...13X. doi:10.1016/j.revpalbo.2018.05.002. S2CID 134549827.
  181. ^ Eliana P. Coturel; Josefina Bodnar; Eduardo M. Morel; Daniel G. Ganuza; Ana J. Sagasti; Marisol Beltrán (2018). "New species of osmundaceous fertile leaves from the Upper Triassic of Argentina". Acta Palaeobotanica. 58 (2): 107–119. doi:10.2478/acpa-2018-0014. S2CID 133644558.
  182. ^ Yingying Zhang; Christopher M. Berry; Deming Wang; Jinzhuang Xue; Le Liu (2018). "Pleurorhizoxylon yixingense gen. et sp. nov., a euphyllophyte axis with anatomically preserved adventitious roots from the Late Devonian of South China" (PDF). International Journal of Plant Sciences. 179 (7): 523–540. doi:10.1086/698710. S2CID 89754022.
  183. ^ Ezequiel Ignacio Vera; Silvia Nélida Césari (2018). "Cyathealean Antarctic ferns from the Aptian Cerro Negro Formation: Rafaherbstia nishidai gen. et sp. nov. and associated fertile organs". Review of Palaeobotany and Palynology. 254: 33–48. Bibcode:2018RPaPa.254...33V. doi:10.1016/j.revpalbo.2018.04.011. S2CID 134696973.
  184. ^ Pu Huang; Lu Liu; Min Qin; Le Liu; Zhenzhen Deng; Deming Wang; James F. Basinger; Jinzhuang Xue (2018). "New Sphenophyllum plant from the Upper Devonian of Zhejiang Province, China". Historical Biology: An International Journal of Paleobiology. 30 (7): 917–927. doi:10.1080/08912963.2017.1322077. S2CID 135210353.
  185. ^ K. Rashidi; F. Schlagintweit (2018). "Zittelina? arumaensis (Okla 1995) nov. comb., and Suppiluliumaella tarburensis n. sp. (Dasycladales) from the upper Maastrichtian of Iran". Arabian Journal of Geosciences. 11 (17): Article 478. doi:10.1007/s12517-018-3839-1. S2CID 134047995.
  186. ^ Enhao Jia; Haijun Song (2018). "End-Permian mass extinction of calcareous algae and microproblematica from Liangfengya, South China". Geobios. 51 (5): 401–418. Bibcode:2018Geobi..51..401J. doi:10.1016/j.geobios.2018.08.007. S2CID 134488092.
  187. ^ Yang Xiaonan; Liu Fengxiang; Cheng Yeming (2018). "A new tree fern stem, Tempskya zhangii sp. nov. (Tempskyaceae) from the Cretaceous of Northeast China". Cretaceous Research. 84: 188–199. Bibcode:2018CrRes..84..188Y. doi:10.1016/j.cretres.2017.11.016.
  188. ^ Hong-He Xu; Qiang Fu; Yao Wang (2018). "A new protolepidodendrid lycopsid from the Middle Devonian of Hunan, South China and its palaeogeographic implications". Review of Palaeobotany and Palynology. 256: 63–69. Bibcode:2018RPaPa.256...63X. doi:10.1016/j.revpalbo.2018.06.003. S2CID 134214365.
  189. ^ Adolfina Savoretti; Alexander C. Bippus; Ruth A. Stockey; Gar W. Rothwell; Alexandru M. F. Tomescu (2018). "Grimmiaceae in the Early Cretaceous: Tricarinella crassiphylla gen. et sp. nov. and the value of anatomically preserved bryophytes". Annals of Botany. 121 (7): 1275–1286. doi:10.1093/aob/mcy015. PMC 6007789. PMID 29444206.
  190. ^ Jennifer L. Morris; Mark N. Puttick; James W. Clark; Dianne Edwards; Paul Kenrick; Silvia Pressel; Charles H. Wellman; Ziheng Yang; Harald Schneider; Philip C. J. Donoghue (2018). "The timescale of early land plant evolution". Proceedings of the National Academy of Sciences of the United States of America. 115 (10): E2274–E2283. Bibcode:2018PNAS..115E2274M. doi:10.1073/pnas.1719588115. PMC 5877938. PMID 29463716.
  191. ^ S. Blair Hedges; Qiqing Tao; Mark Walker; Sudhir Kumar (2018). "Accurate timetrees require accurate calibrations". Proceedings of the National Academy of Sciences of the United States of America. 115 (41): E9510–E9511. Bibcode:2018PNAS..115E9510B. doi:10.1073/pnas.1812558115. PMC 6187123. PMID 30266795.
  192. ^ Jennifer L. Morris; Mark N. Puttick; James W. Clark; Dianne Edwards; Paul Kenrick; Silvia Pressel; Charles H. Wellman; Ziheng Yang; Harald Schneider; Philip C. J. Donoghue (2018). "Reply to Hedges et al.: Accurate timetrees do indeed require accurate calibrations". Proceedings of the National Academy of Sciences of the United States of America. 115 (41): E9512–E9513. Bibcode:2018PNAS..115E9512M. doi:10.1073/pnas.1812816115. PMC 6187173. PMID 30266794.
  193. ^ Mariusz A. Salamon; Philippe Gerrienne; Philippe Steemans; Przemysław Gorzelak; Paweł Filipiak; Alain Le Hérissé; Florentin Paris; Borja Cascales-Miñana; Tomasz Brachaniec; Magdalena Misz-Kennan; Robert Niedźwiedzki; Wiesław Trela (2018). "Putative Late Ordovician land plants" (PDF). New Phytologist. 218 (4): 1305–1309. doi:10.1111/nph.15091. hdl:2268/222752. PMID 29542135.
  194. ^ Oleg V. Ivanov; Elena V. Maslova; Michael S. Ignatov (2018). "Development of the sphagnoid areolation pattern in leaves of Palaeozoic protosphagnalean mosses". Annals of Botany. 122 (5): 915–925. doi:10.1093/aob/mcy046. PMC 6215045. PMID 29659704.
  195. ^ Alexander C. Bippus; Ignacio E. Escapa; Alexandru M. F. Tomescu (2018). "Wanted dead or alive (probably dead): Stem group Polytrichaceae". American Journal of Botany. 105 (8): 1243–1263. doi:10.1002/ajb2.1096. PMID 29893495. S2CID 48360747.
  196. ^ Alexander J. Hetherington; Liam Dolan (2018). "Stepwise and independent origins of roots among land plants". Nature. 561 (7722): 235–238. Bibcode:2018Natur.561..235H. doi:10.1038/s41586-018-0445-z. PMC 6175059. PMID 30135586.
  197. ^ C. Kevin Boyce; William A. DiMichele (2016). "Arborescent lycopsid productivity and lifespan: Constraining the possibilities". Review of Palaeobotany and Palynology. 227: 97–110. Bibcode:2016RPaPa.227...97B. doi:10.1016/j.revpalbo.2015.10.007.
  198. ^ Barry A. Thomas; Christopher J. Cleal (2018). "Arborescent lycophyte growth in the late Carboniferous coal swamps". New Phytologist. 218 (3): 885–890. doi:10.1111/nph.14903. PMID 29282734.
  199. ^ C. Kevin Boyce; William A. DiMichele (2018). "Fast or slow for the arborescent lycopsids?". New Phytologist. 218 (3): 891–893. doi:10.1111/nph.15059. PMID 29457227.
  200. ^ Jeffrey P. Benca; Ivo A. P. Duijnstee; Cindy V. Looy (2018). "UV-B–induced forest sterility: Implications of ozone shield failure in Earth's largest extinction". Science Advances. 4 (2): e1700618. doi:10.1126/sciadv.1700618. PMC 5810612. PMID 29441357.
  201. ^ Viktória Baranyi; Tammo Reichgelt; Paul E. Olsen; William G. Parker; Wolfram M. Kürschner (2018). "Norian vegetation history and related environmental changes: New data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA)". GSA Bulletin. 130 (5–6): 775–795. Bibcode:2018GSAB..130..775B. doi:10.1130/B31673.1. S2CID 85509995.
  202. ^ Sam M. Slater; Charles H. Wellman; Michael Romano; Vivi Vajda (2018). "Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK". Palaeobiodiversity and Palaeoenvironments. 98 (1): 139–151. doi:10.1007/s12549-017-0309-9. S2CID 135123262.
  203. ^ Carles Martín-Closas; Alba Vicente; Jordi Pérez-Cano; Josep Sanjuan; Telm Bover-Arnal (2018). "On the earliest occurrence of Tolypella section Tolypella in the fossil record and the age of major clades in extant Characeae". Botany Letters. 165 (1): 23–33. doi:10.1080/23818107.2017.1387078. S2CID 90936897.
  204. ^ Sol Noetinger; Sandra L. Strayer; Alexandru M.F. Tomescu (2018). "Spore wall ultrastructure and development in a basal euphyllophyte: Psilophyton dawsonii from the Lower Devonian of Quebec (Canada)". American Journal of Botany. 105 (7): 1212–1223. doi:10.1002/ajb2.1137. PMID 30075048. S2CID 51911608.
  205. ^ Feng Liu; Benjamin Bomfleur; Huiping Peng; Quan Li; Hans Kerp; Huaicheng Zhu (2018). "280-m.y.-old fossil starch reveals early plant–animal mutualism". Geology. 46 (5): 423–426. Bibcode:2018Geo....46..423L. doi:10.1130/G39929.1.
  206. ^ Andrés Elgorriaga; Ignacio H. Escapa; Gar W. Rothwell; Alexandru M. F. Tomescu; N. Rubén Cúneo (2018). "Origin of Equisetum: Evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida". American Journal of Botany. 105 (8): 1286–1303. doi:10.1002/ajb2.1125. PMID 30025163. S2CID 51701070.
  207. ^ De-Ming Wang; Ying-Ying Zhang; Le Liu; Hong-He Xu; Min Qin; Lu Liu (2018). "Reinvestigation of the Late Devonian Shougangia bella and new insights into the evolution of fern-like plants". Journal of Systematic Palaeontology. 16 (4): 309–324. doi:10.1080/14772019.2017.1289269. S2CID 90226865.
  208. ^ Brian Axsmith; Judith Skog; Christian Pott (2018). "A Triassic mystery solved: fertile Pekinopteris from the Triassic of North Carolina, United States". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.). Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 179–186. doi:10.1016/B978-0-12-813012-4.00010-3. ISBN 978-01-281-3012-4.
  209. ^ Cunlin Xin; Luhan Wang; Baoxia Du; Yamei Zhang; Jingjing Wang (2018). "Cuticles and spores in situ of Coniopteris hymenophylloides from the Middle Jurassic in Gansu, northwestern China". Acta Geologica Sinica (English Edition). 92 (3): 904–914. doi:10.1111/1755-6724.13582. S2CID 134468562.
  210. ^ Gar W. Rothwell; Michael A. Millay; Ruth A. Stockey (2018). "Resolving the overall pattern of marattialean fern phylogeny". American Journal of Botany. 105 (8): 1304–1314. doi:10.1002/ajb2.1115. PMID 30001474. S2CID 51619531.
  211. ^ Thereis Y. S. Choo; Ignacio H. Escapa (2018). "Assessing the evolutionary history of the fern family Dipteridaceae (Gleicheniales) by incorporating both extant and extinct members in a combined phylogenetic study". American Journal of Botany. 105 (8): 1315–1328. doi:10.1002/ajb2.1121. PMID 30091784. S2CID 51943224.
  212. ^ Selin Toledo; Alexander C. Bippus; Alexandru M. F. Tomescu (2018). "Buried deep beyond the veil of extinction: Euphyllophyte relationships at the base of the spermatophyte clade". American Journal of Botany. 105 (8): 1264–1285. doi:10.1002/ajb2.1102. PMID 29893501. S2CID 48357231.
  213. ^ G. Edirisooriya; H.A. Dharmagunawardhane; Stephen McLoughlin (2018). "The first record of the Permian Glossopteris flora from Sri Lanka: implications for hydrocarbon source rocks in the Mannar Basin". Geological Magazine. 155 (4): 907–920. Bibcode:2018GeoM..155..907E. doi:10.1017/S0016756816001114. S2CID 132766516.
  214. ^ Serge V. Naugolnykh; L. Uranbileg (2018). "A new discovery of Glossopteris in southeastern Mongolia as an argument for distant migration of Gondwanan plants". Journal of Asian Earth Sciences. 154: 142–148. Bibcode:2018JAESc.154..142N. doi:10.1016/j.jseaes.2017.11.039.
  215. ^ Shelby DeWitt; Brooke Kelly; Margarita Araiza; Patricia E. Ryberg (2018). "Growth habit indicators from Permian Antarctic glossopterids". Review of Palaeobotany and Palynology. 248: 34–40. Bibcode:2018RPaPa.248...34D. doi:10.1016/j.revpalbo.2017.10.003.
  216. ^ Patrick Blomenkemper; Hans Kerp; Abdalla Abu Hamad; William A. DiMichele; Benjamin Bomfleur (2018). "A hidden cradle of plant evolution in Permian tropical lowlands". Science. 362 (6421): 1414–1416. Bibcode:2018Sci...362.1414B. doi:10.1126/science.aau4061. PMID 30573628. S2CID 56582195.
  217. ^ Andrew B. Leslie; Jeremy Beaulieu; Garth Holman; Christopher S. Campbell; Wenbin Mei; Linda R. Raubeson; Sarah Mathews (2018). "An overview of extant conifer evolution from the perspective of the fossil record". American Journal of Botany. 105 (9): 1531–1544. doi:10.1002/ajb2.1143. PMID 30157290. S2CID 52120430.
  218. ^ Dai Jing; Sun Bainian (2018). "Early Cretaceous atmospheric CO2 estimates based on stomatal index of Pseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China". Cretaceous Research. 85: 232–242. Bibcode:2018CrRes..85..232J. doi:10.1016/j.cretres.2017.08.011.
  219. ^ David S. Gernandt; Cecelic Reséndiz Arias; Teresa Terrazas; Xitlali Aguirre Dugua; Ann Willyard (2018). "Incorporating fossils into the Pinaceae tree of life". American Journal of Botany. 105 (8): 1329–1344. doi:10.1002/ajb2.1139. PMID 30091785. S2CID 51939922.
  220. ^ Mariko Yamada; Toshihiro Yamada (2018). "Relicts of the Mid-Miocene Climatic Optimum may contribute to the floristic diversity of Japan: a case study of Pinus mikii (Pinaceae) and its extant relatives". Journal of Plant Research. 131 (2): 239–244. doi:10.1007/s10265-017-0993-6. PMID 29101488. S2CID 3517246.
  221. ^ Chong Dong; Yong-Dong Wang; Xiao-Ju Yang; Bai-Nian Sun (2018). "Whole-plant reconstruction and updated phylogeny of Austrohamia acanthobractea (Cupressaceae) from the Middle Jurassic of Northeast China". International Journal of Plant Sciences. 179 (8): 640–662. doi:10.1086/699665. S2CID 92540071.
  222. ^ Jean-David Moreau; Frédéric Thévenard (2018). "Rediscovery of the allegedly "destroyed" holotype of Weltrichia fabrei Saporta, 1891 from the Rhaetian?/Hettangian of Lozère (Southern France)". Geodiversitas. 40 (21): 521–527. doi:10.5252/geodiversitas2018v40a21. S2CID 134517333.
  223. ^ P.I. Alekseev (2018). "The revision of gymnosperm species from Eocene Baltic Amber". Botanicheskii Zhurnal. 103 (2): 229–245.
  224. ^ Jose Barba-Montoya; Mario dos Reis; Harald Schneider; Philip C. J. Donoghue; Ziheng Yang (2018). "Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution". New Phytologist. 218 (2): 819–834. doi:10.1111/nph.15011. PMC 6055841. PMID 29399804.
  225. ^ James A. Doyle; Peter K. Endress (2018). "Phylogenetic analyses of Cretaceous fossils related to Chloranthaceae and their evolutionary implications". The Botanical Review. 84 (2): 156–202. doi:10.1007/s12229-018-9197-6. S2CID 46980346.
  226. ^ Nathan A. Jud; Michael D. D’Emic; Scott A. Williams; Josh C. Mathews; Katie M. Tremaine; Janok Bhattacharya (2018). "A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous)". Science Advances. 4 (9): eaar8568. doi:10.1126/sciadv.aar8568. PMC 6157959. PMID 30263954.
  227. ^ Selena Y. Smith; William J. D. Iles; John C. Benedict; Chelsea D. Specht (2018). "Building the monocot tree of death: Progress and challenges emerging from the macrofossil‐rich Zingiberales". American Journal of Botany. 105 (8): 1389–1400. doi:10.1002/ajb2.1123. PMID 30071130. S2CID 51909421.
  228. ^ Brian A. Atkinson (2018). "The critical role of fossils in inferring deep‐node phylogenetic relationships and macroevolutionary patterns in Cornales". American Journal of Botany. 105 (8): 1401–1411. doi:10.1002/ajb2.1084. PMID 29797563.
  229. ^ Reilly F. Hayes; Selena Y. Smith; Marisol Montellano-Ballesteros; Gerardo Álvarez-Reyes; René Hernandez-Rivera; David E. Fastovsky (2018). "Cornalean affinities, phylogenetic significance, and biogeographic implications of Operculifructus infructescences from the Late Cretaceous (Campanian) of Mexico". American Journal of Botany. 105 (11): 1911–1928. doi:10.1002/ajb2.1179. hdl:2027.42/146566. PMID 30359466. S2CID 53097233.
  230. ^ Mario Coiro; Guillaume Chomicki; James A. Doyle (2018). "Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales". Paleobiology. 44 (3): 490–510. Bibcode:2018Pbio...44..490C. doi:10.1017/pab.2018.23. S2CID 91488394.
  231. ^ Kelly K.S. Matsunaga; Selena Y. Smith; Steven R. Manchester; Dashrath Kapgate; Deepak Ramteke; Amin Garbout; Herminso Villarraga-Gómez (2018). "Reinvestigating an enigmatic Late Cretaceous monocot: morphology, taxonomy, and biogeography of Viracarpon". PeerJ. 6: e4580. doi:10.7717/peerj.4580. PMC 5890723. PMID 29637023.
  232. ^ Yan Wu; Hai-Lu You; Xiao-Qiang Li (2018). "Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China". National Science Review. 5 (5): 721–727. doi:10.1093/nsr/nwx145.
  233. ^ Tiina Särkinen; Sören Kottner; Wolfgang Stuppy; Farah Ahmed; Sandra Knapp (2018). "A new commelinid monocot seed fossil from the early Eocene previously identified as Solanaceae". American Journal of Botany. 105 (1): 95–107. doi:10.1002/ajb2.1009. PMID 29532926.
  234. ^ Tammo Reichgelt; Christopher K. West; David R. Greenwood (2018). "The relation between global palm distribution and climate". Scientific Reports. 8 (1): Article number 4721. Bibcode:2018NatSR...8.4721R. doi:10.1038/s41598-018-23147-2. PMC 5856843. PMID 29549297.
  235. ^ Rathnasiri Premathilake; Chris O. Hunt (2018). "Late Pleistocene humans in Sri Lanka used plant resources: A phytolith record from Fahien rock shelter" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 1–17. Bibcode:2018PPP...505....1P. doi:10.1016/j.palaeo.2018.05.015. S2CID 133979583.
  236. ^ Rathnasiri Premathilake; Chris O. Hunt (2018). "Earliest Musa banana from the late Quaternary sequence at Fahien Rock Shelter in Sri Lanka" (PDF). Journal of Quaternary Science. 33 (6): 624–638. Bibcode:2018JQS....33..624P. doi:10.1002/jqs.3041. S2CID 134053728.
  237. ^ Renske E. Onstein; William J. Baker; Thomas L. P. Couvreur; Søren Faurby; Leonel Herrera-Alsina; Jens-Christian Svenning; W. Daniel Kissling (2018). "To adapt or go extinct? The fate of megafaunal palm fruits under past global change". Proceedings of the Royal Society B: Biological Sciences. 285 (1880): 20180882. doi:10.1098/rspb.2018.0882. PMC 6015859. PMID 29899077.
  238. ^ Steven R. Manchester; Lina B. Golovneva; Dmitry D. Sokoloff; Else Marie Friis (2018). "Early eudicot reproductive structure: Fruit and flower morphology of Ranunculaecarpus Samyl. from the Early Cretaceous of eastern Siberia". Acta Palaeobotanica. 58 (2): 121–133. doi:10.2478/acpa-2018-0017. S2CID 134370620.
  239. ^ Natalia P. Maslova; Eugeny V. Karasev; Tatiana M. Kodrul; Robert A. Spicer; Lyudmila D. Volkova; Teresa E. V. Spicer; Jianhua Jin; Xiaoyan Liu (2018). "Sun and shade leaf variability in Liquidambar chinensis and Liquidambar formosana (Altingiaceae): implications for palaeobotany". Botanical Journal of the Linnean Society. 188 (3): 296–315. doi:10.1093/botlinnean/boy047.
  240. ^ Christa-Ch. Hofmann (2018). "Light and scanning electron microscopic investigations of pollen of Ericales (Ericaceae, Sapotaceae, Ebenaceae, Styracaceae and Theaceae) from five lower and mid-Eocene localities". Botanical Journal of the Linnean Society. 187 (4): 550–578. doi:10.1093/botlinnean/boy035.
  241. ^ Friðgeir Grímsson; Alexandros Xafis; Frank H. Neumann; Louis Scott; Marion K. Bamford; Reinhard Zetter (2018). "The first Loranthaceae fossils from Africa". Grana. 57 (4): 249–259. doi:10.1080/00173134.2018.1430167. PMC 5940175. PMID 29780299.
  242. ^ Lu Dai; Qinghe Hao; Limi Mao (2018). "Morphological diversity of Quercus fossil pollen in the northern South China Sea during the last glacial maximum and its paleoclimatic implication". PLOS ONE. 13 (10): e0205246. Bibcode:2018PLoSO..1305246D. doi:10.1371/journal.pone.0205246. PMC 6185724. PMID 30312322.
  243. ^ Eva‐Maria Sadowski; Jörg U. Hammel; Thomas Denk (2018). "Synchrotron X‐ray imaging of a dichasium cupule of Castanopsis from Eocene Baltic amber". American Journal of Botany. 105 (12): 2025–2036. doi:10.1002/ajb2.1202. PMID 30548995. S2CID 56484290.
  244. ^ Takayuki Shiono; Buntarou Kusumoto; Moriaki Yasuhara; Yasuhiro Kubota (2018). "Roles of climate niche conservatism and range dynamics in woody plant diversity patterns through the Cenozoic". Global Ecology and Biogeography. 27 (7): 865–874. doi:10.1111/geb.12755.
  245. ^ Valeria Susana Perez Loinaze; Ezequiel Ignacio Vera; Lucas Ernesto Fiorelli; Julia Brenda Desojo (2018). "Palaeobotany and palynology of coprolites from the Late Triassic Chañares Formation of Argentina: implications for vegetation provinces and the diet of dicynodonts". Palaeogeography, Palaeoclimatology, Palaeoecology. 502: 31–51. Bibcode:2018PPP...502...31P. doi:10.1016/j.palaeo.2018.04.003. S2CID 134075049.
  246. ^ Fiona L. Gill; Jürgen Hummel; A. Reza Sharifi; Alexandra P. Lee; Barry H. Lomax (2018). "Diets of giants: the nutritional value of sauropod diet during the Mesozoic". Palaeontology. 61 (5): 647–658. Bibcode:2018Palgy..61..647G. doi:10.1111/pala.12385. PMC 6099296. PMID 30147151.
  247. ^ Bárbara Cariglino (2018). "Patterns of insect-mediated damage in a Permian Glossopteris flora from Patagonia (Argentina)". Palaeogeography, Palaeoclimatology, Palaeoecology. 507: 39–51. Bibcode:2018PPP...507...39C. doi:10.1016/j.palaeo.2018.06.022. S2CID 135270585.
  248. ^ Yu-Ling Na; Chun-Lin Sun; Hongshan Wang; David L. Dilcher; Zhen-Yuan Yang; Tao Li; Yun-Feng Li (2018). "Insect herbivory and plant defense on ginkgoalean and bennettitalean leaves of the Middle Jurassic Daohugou Flora from Northeast China and their paleoclimatic implications". Palaeoworld. 27 (2): 202–210. doi:10.1016/j.palwor.2017.08.002. S2CID 90613956.
  249. ^ Rafael Matos Lindoso; Tânia Lindner Dutra; Ismar de Souza Carvalho; Manuel Alfredo Medeiros (2018). "New plant fossils from the Lower Cretaceous of the Parnaíba Basin, Northeastern Brazil: Southern Laurasia links". Brazilian Journal of Geology. 48 (1): 127–145. doi:10.1590/2317-4889201820170071.
  250. ^ Ulrich Heimhofer; Nina Wucherpfennig; Thierry Adatte; Stefan Schouten; Elke Schneebeli-Hermann; Silvia Gardin; Gerta Keller; Sarah Kentsch; Ariane Kujau (2018). "Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2". Nature Communications. 9 (1): Article number 3832. Bibcode:2018NatCo...9.3832H. doi:10.1038/s41467-018-06319-6. PMC 6148089. PMID 30237441.
  251. ^ Daran Zheng; Su-Chin Chang; Vincent Perrichot; Suryendu Dutta; Arka Rudra; Lin Mu; Richard S. Kelly; Sha Li; Qi Zhang; Qingqing Zhang; Jean Wong; Jun Wang; He Wang; Yan Fang; Haichun Zhang; Bo Wang (2018). "A Late Cretaceous amber biota from central Myanmar". Nature Communications. 9 (1): Article number 3170. Bibcode:2018NatCo...9.3170Z. doi:10.1038/s41467-018-05650-2. PMC 6085374. PMID 30093646.
  252. ^ David A. Grimaldi; David Sunderlin; Georgene A. Aaroe; Michelle R. Dempsky; Nancy E. Parker; George Q. Tillery; Jaclyn G. White; Phillip Barden; Paul C. Nascimbene; Christopher J. Williams (2018). "Biological inclusions in amber from the Paleogene Chickaloon Formation of Alaska". American Museum Novitates (Submitted manuscript) (3908): 1–37. doi:10.1206/3908.1. hdl:2246/6909. S2CID 91866682.
  253. ^ Raymond J. Carpenter; Ari Iglesias; Peter Wilf (2018). "Early Cenozoic vegetation in Patagonia: new insights from organically preserved plant fossils (Ligorio Márquez Formation, Argentina)". International Journal of Plant Sciences. 179 (2): 115–135. doi:10.1086/695488. S2CID 89701097.
  254. ^ Olaf K. Lenz; Volker Wilde (2018). "Changes in Eocene plant diversity and composition of vegetation: the lacustrine archive of Messel (Germany)". Paleobiology. 44 (4): 709–735. Bibcode:2018Pbio...44..709L. doi:10.1017/pab.2018.25. S2CID 92445077.
  255. ^ He Wang; Suryendu Dutta; Richard S. Kelly; Arka Rudra; Sha Li; Qing-Qing Zhang; Qian-Qi Zhang; Yi-Xiao Wu; Mei-Zhen Cao; Bo Wang; Jian-Guo Li; Hai-Chun Zhang (2018). "Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet". Palaeoworld. 27 (4): 506–513. doi:10.1016/j.palwor.2018.09.006. S2CID 134436795.
  256. ^ Liliana Londoño; Dana L. Royer; Carlos Jaramillo; Jaime Escobar; David A. Foster; Andrés L. Cárdenas‐Rozo; Aaron Wood (2018). "Early Miocene CO2 estimates from a Neotropical fossil leaf assemblage exceed 400 ppm". American Journal of Botany. 105 (11): 1929–1937. doi:10.1002/ajb2.1187. hdl:10784/26743. PMID 30418663. S2CID 53277803.
  257. ^ J. W. Andrae; F. A. McInerney; P. J. Polissar; J. M. K. Sniderman; S. Howard; P. A. Hall; S. R. Phelps (2018). "Initial expansion of C4 vegetation in Australia during the Late Pliocene". Geophysical Research Letters. 45 (10): 4831–4840. Bibcode:2018GeoRL..45.4831A. doi:10.1029/2018GL077833. hdl:11343/284011. S2CID 134000940.
  258. ^ Allison T. Karp; Anna K. Behrensmeyer; Katherine H. Freeman (2018). "Grassland fire ecology has roots in the late Miocene". Proceedings of the National Academy of Sciences of the United States of America. 115 (48): 12130–12135. Bibcode:2018PNAS..11512130K. doi:10.1073/pnas.1809758115. PMC 6275532. PMID 30429316.
  259. ^ Gael J. Kergoat; Fabien L. Condamine; Emmanuel F. A. Toussaint; Claire Capdevielle-Dulac; Anne-Laure Clamens; Jérôme Barbut; Paul Z. Goldstein; Bruno Le Ru (2018). "Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion". Nature Communications. 9 (1): Article number 5089. Bibcode:2018NatCo...9.5089K. doi:10.1038/s41467-018-07537-8. PMC 6269479. PMID 30504767.
  260. ^ Michaela Ecker; James S. Brink; Lloyd Rossouw; Michael Chazan; Liora K. Horwitz; Julia A. Lee-Thorp (2018). "The palaeoecological context of the Oldowan–Acheulean in southern Africa". Nature Ecology & Evolution. 2 (7): 1080–1086. doi:10.1038/s41559-018-0560-0. PMID 29784982. S2CID 29153986.
  261. ^ Zhou Xinying; Yang Jilong; Wang Shiqi; Xiao Guoqiao; Zhao Keliang; Zheng Yan; Shen Hui; Li Xiaoqiang (2018). "Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene Transition in temperate northern East Asia". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 287–294. Bibcode:2018PPP...505..287Z. doi:10.1016/j.palaeo.2018.06.007. S2CID 134868767.
  262. ^ Irene Esteban; Curtis W. Marean; Erich C. Fisher; Panagiotis Karkanas; Dan Cabanes; Rosa M. Albert (2018). "Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5-6 (south coast, South Africa)". PLOS ONE. 13 (6): e0198558. Bibcode:2018PLoSO..1398558E. doi:10.1371/journal.pone.0198558. PMC 5986156. PMID 29864147.
  263. ^ Mathias M. Pires; Paulo R. Guimarães; Mauro Galetti; Pedro Jordano (2018). "Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services". Ecography. 41 (1): 153–163. doi:10.1111/ecog.03163. S2CID 31921405.
  264. ^ Elizabeth S. Jeffers; Nicki J. Whitehouse; Adrian Lister; Gill Plunkett; Phil Barratt; Emma Smyth; Philip Lamb; Michael W. Dee; Stephen J. Brooks; Katherine J. Willis; Cynthia A. Froyd; Jenny E. Watson; Michael B. Bonsall (2018). "Plant controls on Late Quaternary whole ecosystem structure and function". Ecology Letters. 21 (6): 814–825. doi:10.1111/ele.12944. hdl:10026.1/10853. PMID 29601664. S2CID 4493047.
  265. ^ Joanna K. Carpenter; Jamie R. Wood; Janet M. Wilmshurst; Dave Kelly (2018). "An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds". Proceedings of the Royal Society B: Biological Sciences. 285 (1877): 20180352. doi:10.1098/rspb.2018.0352. PMC 5936733. PMID 29669903.
  266. ^ Benjamin Adroit; Vincent Girard; Lutz Kunzmann; Jean-Frédéric Terral; Torsten Wappler (2018). "Plant-insect interactions patterns in three European paleoforests of the late-Neogene—early-Quaternary". PeerJ. 6: e5075. doi:10.7717/peerj.5075. PMC 6015487. PMID 29942705.
  267. ^ J.S. Carrión; J. Ochando; S. Fernández; R. Blasco; J. Rosell; M. Munuera; G. Amorós; I. Martín-Lerma; S. Finlayson; F. Giles; R. Jennings; G. Finlayson; F. Giles-Pacheco; J. Rodríguez-Vidal; C. Finlayson (2018). "Last Neanderthals in the warmest refugium of Europe: Palynological data from Vanguard Cave" (PDF). Review of Palaeobotany and Palynology. 259: 63–80. Bibcode:2018RPaPa.259...63C. doi:10.1016/j.revpalbo.2018.09.007. S2CID 135278171.
  268. ^ L.M. Sender; I. Escapa; A. Benedetti; R. Cúneo; J.B. Diez (2018). "Exploring the interior of cuticles and compressions of fossil plants by FIB‐SEM milling and image microscopy". Journal of Microscopy. 269 (1): 48–58. doi:10.1111/jmi.12607. PMID 28745429. S2CID 440196.
  269. ^ Eleni Asouti; Maria Ntinou; Ceren Kabukcu (2018). "The impact of environmental change on Palaeolithic and Mesolithic plant use and the transition to agriculture at Franchthi Cave, Greece". PLOS ONE. 13 (11): e0207805. Bibcode:2018PLoSO..1307805A. doi:10.1371/journal.pone.0207805. PMC 6245798. PMID 30458046.
  270. ^ Jennifer Watling; Myrtle P. Shock; Guilherme Z. Mongeló; Fernando O. Almeida; Thiago Kater; Paulo E. De Oliveira; Eduardo G. Neves (2018). "Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre". PLOS ONE. 13 (7): e0199868. Bibcode:2018PLoSO..1399868W. doi:10.1371/journal.pone.0199868. PMC 6059402. PMID 30044799.
  271. ^ Jamie R. Wood; Francisca P. Díaz; Claudio Latorre; Janet M. Wilmshurst; Olivia R. Burge; Rodrigo A. Gutiérrez (2018). "Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile". Scientific Reports. 8 (1): Article number 17208. Bibcode:2018NatSR...817208W. doi:10.1038/s41598-018-35299-2. PMC 6249261. PMID 30464240.
  272. ^ Yong-Sheng Chen; Tao Deng; Zhuo Zhou; Hang Sun (2018). "Is the East Asian flora ancient or not?". National Science Review. 5 (6): 920–932. doi:10.1093/nsr/nwx156.