2 31 polytope

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Up2 3 21 t0 E6.svg
321
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Up2 3 21 t1 E6.svg
Rectified 321
CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Up2 3 21 t2 E6.svg
Birectified 321
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Up2 1 32 t1 E6.svg
Rectified 132
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Up2 1 32 t0 E6.svg
132
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Up2 2 31 t0 E6.svg
231
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
Up2 2 31 t1 E6.svg
Rectified 231
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.png
Orthogonal projections in E6 Coxeter plane

In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.

Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch.

The rectified 231 is constructed by points at the mid-edges of the 231.

These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

2_31 polytope[edit]

Gosset 231 polytope
Type Uniform 7-polytope
Family 2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol 231
Coxeter diagram CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
6-faces 632:
56 221E6 graph.svg
576 {35}6-simplex t0.svg
5-faces 4788:
756 2115-orthoplex.svg
4032 {34}5-simplex t0.svg
4-faces 16128:
4032 2014-simplex t0.svg
12096 {33}4-simplex t0.svg
Cells 20160 {32}3-simplex t0.svg
Faces 10080 {3}2-simplex t0.svg
Edges 2016
Vertices 126
Vertex figure 131
6-demicube.svg
Petrie polygon Octadecagon
Coxeter group E7, [33,2,1]
Properties convex

The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube. Its 126 vertices represent the root vectors of the simple Lie group E7.

This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331.

Alternate names[edit]

  • E. L. Elte named it V126 (for its 126 vertices) in his 1912 listing of semiregular polytopes.[1]
  • It was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
  • Pentacontihexa-pentacosiheptacontihexa-exon (Acronym laq) - 56-576 facetted polyexon (Jonathan Bowers)[2]

Construction[edit]

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the short branch leaves the 6-simplex. There are 56 of these facets. These facets are centered on the locations of the vertices of the 321 polytope, CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 3-length branch leaves the 221. There are 576 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131, CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Images[edit]

Coxeter plane projections
E7 E6 / F4 B6 / A6
Up2 2 31 t0 E7.svg
[18]
Up2 2 31 t0 E6.svg
[12]
Up2 2 31 t0 A6.svg
[7x2]
A5 D7 / B6 D6 / B5
Up2 2 31 t0 A5.svg
[6]
Up2 2 31 t0 D7.svg
[12/2]
Up2 2 31 t0 D6.svg
[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3
Up2 2 31 t0 D5.svg
[8]
Up2 2 31 t0 D4.svg
[6]
Up2 2 31 t0 D3.svg
[4]

Related polytopes and honeycombs[edit]

2k1 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2×A1 E4=A4 E5=D5 E6 E7 E8 E9 = {\tilde{E}}_{8} = E8+ E10 = {\bar{T}}_8 = E8++
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3-1,2,1] [30,2,1] [[31,2,1]] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 384 51,840 2,903,040 696,729,600
Graph Trigonal dihedron.png 4-simplex t0.svg 5-cube t4.svg Up 2 21 t0 E6.svg Up2 2 31 t0 E7.svg 2 41 t0 E8.svg - -
Name 2-1,1 201 211 221 231 241 251 261

Rectified 2_31 polytope[edit]

Rectified 231 polytope
Type Uniform 7-polytope
Family 2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol t1(231)
Coxeter diagram CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
6-faces 758
5-faces 10332
4-faces 47880
Cells 100800
Faces 90720
Edges 30240
Vertices 2016
Vertex figure 6-demicube
Petrie polygon Octadecagon
Coxeter group E7, [33,2,1]
Properties convex

The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231.

Alternate names[edit]

  • Rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon (acronym rolaq) (Jonathan Bowers)[3]

Construction[edit]

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the short branch leaves the rectified 6-simplex, CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 2-length branch leaves the, 6-demicube, CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 3-length branch leaves the rectified 221, CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The vertex figure is determined by removing the ringed node and ringing the neighboring node.

CDel nodea 1.pngCDel 2.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Images[edit]

Coxeter plane projections
E7 E6 / F4 B6 / A6
Up2 2 31 t1 E7.svg
[18]
Up2 2 31 t1 E6.svg
[12]
Up2 2 31 t1 A6.svg
[7x2]
A5 D7 / B6 D6 / B5
Up2 2 31 t1 A5.svg
[6]
Up2 2 31 t1 D7.svg
[12/2]
Up2 2 31 t1 D6.svg
[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3
Up2 2 31 t1 D5.svg
[8]
Up2 2 31 t1 D4.svg
[6]
Up2 2 31 t1 D3.svg
[4]

See also[edit]

Notes[edit]

  1. ^ Elte, 1912
  2. ^ Klitzing, (x3o3o3o *c3o3o3o - laq)
  3. ^ Klitzing, (o3x3o3o *c3o3o3o - rolaq)

References[edit]

  • Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen 
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Richard Klitzing, 7D, uniform polytopes (polyexa) x3o3o3o *c3o3o3o - laq, o3x3o3o *c3o3o3o - rolaq