# 2 31 polytope

 Orthogonal projections in E6 Coxeter plane 321 Rectified 321 Birectified 321 Rectified 132 132 231 Rectified 231

In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.

Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch.

The rectified 231 is constructed by points at the mid-edges of the 231.

These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .

## 2_31 polytope

Gosset 231 polytope
Type Uniform 7-polytope
Family 2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol 231
Coxeter diagram
6-faces 632:
56 221
576 {35}
5-faces 4788:
756 211
4032 {34}
4-faces 16128:
4032 201
12096 {33}
Cells 20160 {32}
Faces 10080 {3}
Edges 2016
Vertices 126
Vertex figure 131
Coxeter group E7, [33,2,1]
Properties convex

The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube. Its 126 vertices represent the root vectors of the simple Lie group E7.

This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331.

### Alternate names

• E. L. Elte named it V126 (for its 126 vertices) in his 1912 listing of semiregular polytopes.[1]
• It was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
• Pentacontihexa-pentacosiheptacontihexa-exon (Acronym laq) - 56-576 facetted polyexon (Jonathan Bowers)[2]

### Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on the short branch leaves the 6-simplex. There are 56 of these facets. These facets are centered on the locations of the vertices of the 321 polytope, .

Removing the node on the end of the 3-length branch leaves the 221. There are 576 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, .

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131, .

### Images

Coxeter plane projections
E7 E6 / F4 B6 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

### Related polytopes and honeycombs

2k1 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2×A1 E4=A4 E5=D5 E6 E7 E8 E9 = ${\tilde{E}}_{8}$ = E8+ E10 = ${\bar{T}}_8$ = E8++
Coxeter
diagram
Symmetry [3-1,2,1] [30,2,1] [[31,2,1]] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 384 51,840 2,903,040 696,729,600
Graph - -
Name 2-1,1 201 211 221 231 241 251 261

## Rectified 2_31 polytope

Rectified 231 polytope
Type Uniform 7-polytope
Family 2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol t1(231)
Coxeter diagram
6-faces 758
5-faces 10332
4-faces 47880
Cells 100800
Faces 90720
Edges 30240
Vertices 2016
Vertex figure 6-demicube
Coxeter group E7, [33,2,1]
Properties convex

The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231.

### Alternate names

• Rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon (acronym rolaq) (Jonathan Bowers)[3]

### Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on the short branch leaves the rectified 6-simplex, .

Removing the node on the end of the 2-length branch leaves the, 6-demicube, .

Removing the node on the end of the 3-length branch leaves the rectified 221, .

The vertex figure is determined by removing the ringed node and ringing the neighboring node.

### Images

Coxeter plane projections
E7 E6 / F4 B6 / A6

[18]

[12]

[7x2]
A5 D7 / B6 D6 / B5

[6]

[12/2]

[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3

[8]

[6]

[4]

## Notes

1. ^ Elte, 1912
2. ^ Klitzing, (x3o3o3o *c3o3o3o - laq)
3. ^ Klitzing, (o3x3o3o *c3o3o3o - rolaq)

## References

• Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen
• H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
• Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
• (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
• Richard Klitzing, 7D, uniform polytopes (polyexa) x3o3o3o *c3o3o3o - laq, o3x3o3o *c3o3o3o - rolaq