4-Hydroxycoumarins

From Wikipedia, the free encyclopedia
Jump to: navigation, search
4-Hydroxycoumarin
Chemical structure of
Identifiers
CAS number 1076-38-6 YesY
PubChem 14101
ChemSpider 10254753 YesY
ChEMBL CHEMBL301141 YesY
Jmol-3D images Image 1
Image 2
Properties
Molecular formula C9H6O3
Molar mass 162.14 g/mol
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY (verify) (what is: YesY/N?)
Infobox references
Warning label on a tube of "brown rat" poison laid on a dike of the Scheldt river in Steendorp, Belgium. The tube contains bromadiolone, a second-generation ("super-warfarin") anticoagulant. The label in Dutch states, in part: Contains an anticoagulant with prolonged activity. Antidote Vitamin K1.

4-Hydroxycoumarins are a class of vitamin K antagonist (VKA) anticoagulant drug molecules derived from coumarin (chromen-2-one) by adding a hydroxy group at the 4 position to obtain "4-hydroxycoumarin" (or "4-hydroxychromen-2-one"; formally then renumbered as 2-hydroxychromen-4-one), then adding a large aromatic substituent at the 3-position (the ring-carbon between the hydroxyl and the carbonyl). The large 3-position substituent is required for anticoagulant activity.

The primary mechanism of the 4-hydroxycoumarin drugs is the inhibition of vitamin K epoxide reductase. These compounds are not direct antagonists (in the pharmaceutical sense) of vitamin K, but rather act to deplete reduced vitamin K in tissues. For this reason vitamin K antagonizes their effect, and this has led to the loose terminology of vitamin K antagonism.

Origin[edit]

Although 4-hydroxycoumarin itself is not an anticoagulant, it is an important fungal metabolite from the precursor coumarin (also not an anticoagulant), and its production leads to further fermentative production of the natural anticoagulant dicoumarol. This happens in the presence of naturally occurring formaldehyde, which allows attachment of a second 4-hydroxycoumarin molecule through the linking carbon of the formaldehyde, to the 3-position of the first 4-hydroxycoumarin molecule, to give the semi-dimer the motif of the drug class. Dicoumarol appears in spoiled sweet clover silages and is considered to be a fermentation product and mycotoxin.[1] After its identification in 1940, it became the historical prototype of this drug class. See warfarin for this history.

Effect[edit]

The synthetic drugs in the 4-hydroxycoumarin class are all noted primarily for their use as anticoagulants, though they can have several additional effects. All affect the normal metabolism of vitamin K in the body by inhibiting the enzyme vitamin K epoxide reductase which recycles vitamin K to active form. As such, these compounds form the most important and widely used subset of vitamin K antagonist drugs, but other such drugs exist which do not have the 4-hydroxycoumarin structure. All the vitamin K antagonist agents diminish the amount of available vitamin K in the body, and thus inhibit the action of vitamin K-dependent enzymes that are critically involved in the production of active forms of certain clotting factors, and certain other metabolic processes involving the binding of calcium ion.

Drugs and poisons in the class[edit]

The simplest synthetic molecule in the 4-hydroxycoumarin class is warfarin, in which the aromatic 3-position substituent is a simple phenyl group. So called "super-warfarins" or second-generation anticoagulants in this class, were developed as rodenticides for rodents that have developed warfarin resistance. The second generation agents have even larger lipid-soluble substituents at the 3-position (e.g. brodifacoum), a chemical change that causes their half life in the body to be greatly increased (sometimes to months). The antirodenticide chemicals are sometimes incorrectly referred to as "coumadins" rather than 4-hydroxycoumarins (Coumadin is a brandname for warfarin). They are also referred to as "coumarins," in reference to their derivation, although this term also may be deceptive since coumarin itself, as noted, is not active in clotting, and is used mostly as a perfumery agent.

Pharmaceutical examples of 4-hydroxycoumarin pharmaceuticals include:

Compounds in this class have also been used as pesticides, specifically rodenticides. They act by causing the affected animal to hemorrhage, causing it to seek water, and thus leave dwellings to die outdoors.

The second-generation vitamin K antagonist agents, used only in this fashion as poisons (because their duration of action is too long to be used as pharmaceuticals) include:

Structures[edit]

Cumarin.svg 4-Hydroxycoumarin structure.svg Dicumarol.svg
Coumarin
This molecule does not affect coagulation
4-Hydroxycoumarin
This molecule does not affect coagulation, but is a known carcinogen in diesel fumes and tobacco smoke, where it probably derives from burning the additive coumarin.
Dicumarol
This molecule was the first discovered 4-hydroxycoumarin anticoagulant. It is a dimer type structure connected at the 3 ring position.
Phenprocoumon.svg Warfarin.svg Acenocoumarol.svg
Phenprocoumon
(Anticoagulant)
Warfarin
Most commonly used anticoagulant pharmaceutical
Acenocoumarol
(Anticoagulant)
Brodifacoum.svg Bromadiolone structure.svg
Brodifacoum
This molecule is a second-generation anticoagulant with a large 3-position substituent which causes it to be retained in fatty tissues for longer times than first-generation compounds and pharmaceuticals. (Rodenticide)
Bromadiolone
(Rodenticide)
Coumatetralyl.svg Difenakum structure.svg
Coumatetralyl
(Rodenticide)
Difenacoum
(Rodenticide)

See also[edit]

References[edit]

  1. ^ Bye, A., King, H. K., 1970. The biosynthesis of 4-hydroxycoumarin and dicoumarol by Aspergillus fumigatus Fresenius. Biochemical Journal 117, 237-245.

External links[edit]