# 5-cell honeycomb

4-simplex honeycomb
(No image)
Type Uniform 4-honeycomb
Family Simplectic honeycomb
Schläfli symbol {3[5]}
Coxeter diagram
4-face types {3,3,3}
t1{3,3,3}
Cell types {3,3}
t1{3,3}
Face types {3}
Vertex figure
t0,3{3,3,3}
Symmetry ${\tilde{A}}_4$×2, [[3[5]]]
Properties vertex-transitive

In four-dimensional Euclidean geometry, the 4-simplex honeycomb, 5-cell honeycomb or pentachoric-dispentachoric honeycomb is a space-filling tessellation honeycomb. It is composed of 5-cells and rectified 5-cells facets in a ratio of 1:1.

Cells of the vertex figure are ten tetrahedrons and 20 triangular prisms, corresponding to the ten 5-cells and 20 rectified 5-cells that meet at each vertex. All the vertices lie in parallel realms in which they form alternated cubic honeycombs, the tetrahedra being either tops of the rectified 5-cell or the bases of the 5-cell, and the octahedra being the bottoms of the rectified 5-cell.[1]

## Alternate names

• Cyclopentachoric tetracomb
• Pentachoric-dispentachoric tetracomb

## Projection by folding

The 5-cell honeycomb can be projected into the 2-dimensional square tiling by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

## A4 lattice

This vertex arrangement is called the A4 lattice, or 4-simplex lattice. The 20 vertices of its vertex figure, the runcinated 5-cell represent the 20 roots of the ${\tilde{A}}_4$ Coxeter group.[2] It is the 4-dimensional case of a simplectic honeycomb.

The A*
4
lattice is the union of five A4 lattices, and is the dual to the omnitruncated 5-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-cell

= dual of

## Related polytopes and honeycombs

The tops of the 5-cells in this honeycomb adjoin the bases of the 5-cells, and vice versa, in adjacent laminae; but alternating laminae may be inverted so that the tops of the rectified 5-cells adjoin the tops of the rectified 5-cells and the bases of the 5-cells adjoin the bases of other 5-cells. This inversion results in another non-Wythoffian uniform convex honeycomb. Octahedral prisms and tetrahedral prisms may be inserted in between alternated laminae as well, resulting in two more non-Wythoffian elongated uniform honeycombs.[3]

This honeycomb is one of seven unique uniform honeycombs[4] constructed by the ${\tilde{A}}_4$ Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

Pentagon
symmetry
Extended
symmetry
Extended
diagram
Extended
order
Honeycomb diagrams
a1 [3[5]] ×1 (None)
i2 [[3[5]]] ×2  1, 2, 3,

4, 5, 6

r10 [5[3[5]]] ×10  7

### Rectified 5-cell honeycomb

Rectified 5-cell honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol t0,2{3[5]} or r{3[5]}
Coxeter diagram
4-face types t1{33}
t0,2{33}
t0,3{33}
Cell types Tetrahedron
Octahedron
Cuboctahedron
Triangular prism
Vertex figure triangular elongated-antiprismatic prism
Symmetry ${\tilde{A}}_4$×2, [[3[5]]]
Properties vertex-transitive

The rectified 4-simplex honeycomb or rectified 5-cell honeycomb is a space-filling tessellation honeycomb.

#### Alternate names

• small cyclorhombated pentachoric tetracomb
• small prismatodispentachoric tetracomb

### Cyclotruncated 5-cell honeycomb

Cyclotruncated 5-cell honeycomb
(No image)
Type Uniform 4-honeycomb
Family Truncated simplectic honeycomb
Schläfli symbol t0,1{3[5]}
Coxeter diagram
4-face types {3,3,3}
t{3,3,3}
2t{3,3,3}
Cell types {3,3}
t{3,3}
Face types Triangle {3}
Hexagon {6}
Vertex figure
Elongated tetrahedral antiprism
[3,4,2+], order 48
Symmetry ${\tilde{A}}_4$×2, [[3[5]]]
Properties vertex-transitive

The cyclotruncated 4-simplex honeycomb or cyclotruncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be seen as a birectified 5-cell honeycomb.

It is composed of 5-cells, truncated 5-cells, and bitruncated 5-cells facets in a ratio of 2:2:1. Its vertex figure is an Elongated tetrahedral antiprism, with 8 equilateral triangle and 24 isosceles triangle faces, defining 8 5-cell and 24 truncated 5-cell facets around a vertex.

It can be constructed as five sets of parallel hyperplanes that divide space into two half-spaces. The 3-space hyperplanes contain quarter cubic honeycombs as a collection facets.[1]

#### Alternate names

• Cyclotruncated pentachoric tetracomb
• Small truncated-pentachoric tetracomb

### Truncated 5-cell honeycomb

Truncated 4-simplex honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol t0,1,2{3[5]} or t{3[5]}
Coxeter diagram
4-face types t0,1{33}
t0,1,2{33}
t0,3{33}
Cell types Tetrahedron
Truncated tetrahedron
Truncated octahedron
Triangular prism
Vertex figure triangular elongated-antiprismatic pyramid
Symmetry ${\tilde{A}}_4$×2, [[3[5]]]
Properties vertex-transitive

The truncated 4-simplex honeycomb or truncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be called a cyclocantitruncated 5-cell honeycomb.

#### Alaternate names

• Great cyclorhombated pentachoric tetracomb
• Great truncated-pentachoric tetracomb

### Cantellated 5-cell honeycomb

Cantellated 5-cell honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol t0,1,3{3[5]} or rr{3[5]}
Coxeter diagram
4-face types t0,2{33}
t1,2{33}
t0,1,3{33}
Cell types Truncated tetrahedron
Octahedron
Cuboctahedron
Triangular prism
Hexagonal prism
Vertex figure triangular-prismatic antifastigium
Symmetry ${\tilde{A}}_4$×2, [[3[5]]]
Properties vertex-transitive

The cantellated 4-simplex honeycomb or cantellated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be called a cycloruncitruncated 5-cell honeycomb.

#### Alternate names

• Cycloprismatorhombated pentachoric tetracomb
• Great prismatodispentachoric tetracomb

### Bitruncated 5-cell honeycomb

Bitruncated 5-cell honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol t0,1,2,3{3[5]} or 2t{3[5]}
Coxeter diagram
4-face types t0,1,3{33}
t0,1,2{33}
t0,1,2,3{33}
Cell types Cuboctahedron
Vertex figure tilted rectangular duopyramid
Symmetry ${\tilde{A}}_4$×2, [[3[5]]]
Properties vertex-transitive

The bitruncated 4-simplex honeycomb or bitruncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be called a cycloruncicantitruncated 5-cell honeycomb.

#### Alternate names

• Great cycloprismated pentachoric tetracomb
• Grand prismatodispentachoric tetracomb

### Omnitruncated 5-cell honeycomb

Omnitruncated 4-simplex honeycomb
(No image)
Type Uniform 4-honeycomb
Family Omnitruncated simplectic honeycomb
Schläfli symbol t0,1,2,3,4{3[5]} or tr{3[5]}
Coxeter diagram
4-face types t0,1,2,3{3,3,3}
Cell types t0,1,2{3,3}
{6}x{}
Face types {4}
{6}
Vertex figure
Irr. 5-cell
Symmetry ${\tilde{A}}_4$×10, [5[3[5]]]
Properties vertex-transitive, cell-transitive

The omnitruncated 4-simplex honeycomb or omnitruncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be seen as a cantitruncated 5-cell honeycomb and also a cyclosteriruncicantitruncated 5-cell honeycomb. .

It is composed entirely of omnitruncated 5-cell (omnitruncated 4-simplex) facets.

Coxeter calls this Hinton's honeycomb after C. H. Hinton, who described it in his book The Fourth Dimension in 1906.[5]

The facets of all omnitruncated simplectic honeycombs are called permutahedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,..,n).

#### Alternate names

• Omnitruncated cyclopentachoric tetracomb
• Great-prismatodecachoric tetracomb

#### A4* lattice

The A*
4
lattice is the union of five A4 lattices, and is the dual to the omnitruncated 5-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-cell.[6]

= dual of

Regular and uniform honeycombs in 4-space:

## Notes

1. ^ a b Olshevsky (2006), Model 134
2. ^ http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A4.html
3. ^ Olshevsky (2006), Klitzing, elong( x3o3o3o3o3*a ) - ecypit - O141, schmo( x3o3o3o3o3*a ) - zucypit - O142, elongschmo( x3o3o3o3o3*a ) - ezucypit - O143
4. ^ [1], A000029 8-1 cases, skipping one with zero marks
5. ^ The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. (The classification of Zonohededra, page 73)
6. ^ The Lattice A4*

## References

• Norman Johnson Uniform Polytopes, Manuscript (1991)
• Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
• (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
• (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
• George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 134
• Richard Klitzing, 4D, Euclidean tesselations, x3o3o3o3o3*a - cypit - O134, x3x3x3x3x3*a - otcypit - 135, x3x3x3o3o3*a - gocyropit - O137, x3x3o3x3o3*a - cypropit - O138, x3x3x3x3o3*a - gocypapit - O139, x3x3x3x3x3*a - otcypit - 140
• Affine Coxeter group Wa(A4), Quaternions, and Decagonal Quasicrystals Mehmet Koca, Nazife O. Koca, Ramazan Koc (2013) [3]