5-orthoplex

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Regular 5-orthoplex
(pentacross)
5-cube t4.svg
Orthogonal projection
inside Petrie polygon
Type Regular 5-polytope
Family orthoplex
Schläfli symbol {3,3,3,4}
{3,3,31,1}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
4-faces 32 {33}Cross graph 4.png
Cells 80 {3,3}Cross graph 3.png
Faces 80 {3}Cross graph 2.png
Edges 40
Vertices 10
Vertex figure Pentacross verf.png
16-cell
Petrie polygon decagon
Coxeter groups BC5, [3,3,3,4]
D5, [32,1,1]
Dual 5-cube
Properties convex

In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.

It has two constructed forms, the first being regular with Schläfli symbol {33,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {32,1,1} or Coxeter symbol 211.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube.

Alternate names[edit]

  • pentacross, derived from combining the family name cross polytope with pente for five (dimensions) in Greek.
  • Triacontaditeron (or triacontakaiditeron) - as a 32-facetted 5-polytope (polyteron).

Cartesian coordinates[edit]

Cartesian coordinates for the vertices of a 5-orthoplex, centered at the origin are

(±1,0,0,0,0), (0,±1,0,0,0), (0,0,±1,0,0), (0,0,0,±1,0), (0,0,0,0,±1)

Construction[edit]

There are three Coxeter groups associated with the 5-orthoplex, one regular, dual of the penteract with the C5 or [4,3,3,3] Coxeter group, and a lower symmetry with two copies of 5-cell facets, alternating, with the D5 or [32,1,1] Coxeter group, and the final one as a dual 5-orthotope, called a 5-fusil which can have a variety of subsymmetries.

Name Coxeter diagram Schläfli symbol Symmetry Order Vertex figure(s)
regular 5-orthoplex CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {3,3,3,4} [3,3,3,4] 3840 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Alternate 5-orthoplex CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png {3,3,31,1} [3,3,31,1] 1920 CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
5-fusil
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png {3,3,3,4} [4,3,3,3] 3840 CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.png {3,3,4}+{} [4,3,3,2] 768 CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png {3,4}+{4} [4,3,2,4] 384 CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png {3,4}+2{} [4,3,2,2] 192 CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.png 2{4}+{} [4,2,4,2] 128 CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png {4}+3{} [4,2,2,2] 64 CDel node f1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png 5{} [2,2,2,2] 32 CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node f1.png

Other images[edit]

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t4.svg 5-cube t4 B4.svg 5-cube t4 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t4 B2.svg 5-cube t4 A3.svg
Dihedral symmetry [4] [4]
Pentacross wire.png
The perspective projection (3D to 2D) of a stereographic projection (4D to 3D) of the Schlegel diagram (5D to 4D) of the 5-orthoplex. 10 sets of 4 edges form 10 circles in the 4D Schlegel diagram: two of these circles are straight lines in the stereographic projection because they contain the center of projection.

Related polytopes and honeycombs[edit]

2k1 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 = {\tilde{E}}_{8} = E8+ E10 = {\bar{T}}_8 = E8++
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3-1,2,1] [30,2,1] [[31,2,1]] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 384 51,840 2,903,040 696,729,600
Graph Trigonal dihedron.png 4-simplex t0.svg 5-cube t4.svg Up 2 21 t0 E6.svg Up2 2 31 t0 E7.svg 2 41 t0 E8.svg - -
Name 2-1,1 201 211 221 231 241 251 261

This polytope is one of 63 uniform polypeta generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

5-cube t4.svg
β5
5-cube t3.svg
t1β5
5-cube t2.svg
t2γ5
5-cube t1.svg
t1γ5
5-cube t0.svg
γ5
5-cube t34.svg
t0,1β5
5-cube t24.svg
t0,2β5
5-cube t23.svg
t1,2β5
5-cube t14.svg
t0,3β5
5-cube t13.svg
t1,3γ5
5-cube t12.svg
t1,2γ5
5-cube t04.svg
t0,4γ5
5-cube t03.svg
t0,3γ5
5-cube t02.svg
t0,2γ5
5-cube t01.svg
t0,1γ5
5-cube t234.svg
t0,1,2β5
5-cube t134.svg
t0,1,3β5
5-cube t124.svg
t0,2,3β5
5-cube t123.svg
t1,2,3γ5
5-cube t034.svg
t0,1,4β5
5-cube t024.svg
t0,2,4γ5
5-cube t023.svg
t0,2,3γ5
5-cube t014.svg
t0,1,4γ5
5-cube t013.svg
t0,1,3γ5
5-cube t012.svg
t0,1,2γ5
5-cube t1234.svg
t0,1,2,3β5
5-cube t0234.svg
t0,1,2,4β5
5-cube t0134.svg
t0,1,3,4γ5
5-cube t0124.svg
t0,1,2,4γ5
5-cube t0123.svg
t0,1,2,3γ5
5-cube t01234.svg
t0,1,2,3,4γ5

References[edit]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Richard Klitzing, 5D uniform polytopes (polytera), x3o3o3o4o - tac

External links[edit]