6-polytope

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Graphs of three regular and five Uniform 6-polytopes
6-simplex t0.svg
6-simplex
6-cube t5.svg
6-orthoplex, 311
6-cube t0.svg
6-cube (Hexeract)
Up 2 21 t0 E6.svg
221
6-simplex t05.svg
Expanded 6-simplex
6-cube t4.svg
Rectified 6-orthoplex
6-demicube t0 D6.svg
6-demicube 131
(Demihexeract)
Up 1 22 t0 E6.svg
122

In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets.

Definition[edit]

A 6-polytope is a closed six-dimensional figure with vertices, edges, faces, cells (3-faces), 4-faces, and 5-faces. A vertex is a point where six or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron. A 4-face is a polychoron, and a 5-face is a 5-polytope. Furthermore, the following requirements must be met:

  • Each 4-face must join exactly two 5-faces (facets).
  • Adjacent facets are not in the same five-dimensional hyperplane.
  • The figure is not a compound of other figures which meet the requirements.

Characteristics[edit]

The topology of any given 6-polytope is defined by its Betti numbers and torsion coefficients.[1]

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 6-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[1]

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.[1]

Classification[edit]

6-polytopes may be classified by properties like "convexity" and "symmetry".

  • A 6-polytope is convex if its boundary (including its 5-faces, 4-faces, cells, faces and edges) does not intersect itself and the line segment joining any two points of the 6-polytope is contained in the 6-polytope or its interior; otherwise, it is non-convex. Self-intersecting 6-polytope are also known as star 6-polytopes, from analogy with the star-like shapes of the non-convex Kepler-Poinsot polyhedra.
  • A regular 6-polytope has all identical regular 5-polytope facets. All regular 6-polytope are convex.
Main article: Uniform 6-polytope
  • A prismatic 6-polytope is constructed by the Cartesian product of two lower-dimensional polytopes. A prismatic 6-polytope is uniform if its factors are uniform. The 6-cube is prismatic (product of a squares and a cube), but is considered separately because it has symmetries other than those inherited from its factors.
  • A 5-space tessellation is the division of five-dimensional Euclidean space into a regular grid of 5-polytope facets. Strictly speaking, tessellations are not 6-polytopes as they do not bound a "6D" volume, but we include them here for the sake of completeness because they are similar in many ways to 6-polytope. A uniform 5-space tessellation is one whose vertices are related by a space group and whose facets are uniform 5-polytopes.

Regular 6-polytopes[edit]

Regular 6-polytopes can be generated from Coxeter groups represented by the Schläfli symbol {p,q,r,s,t} with t {p,q,r,s} 5-polytope facets around each cell.

There are only three such convex regular 6-polytopes:

There are no nonconvex regular polytopes of 5 or more dimensions.

For the 3 convex regular 6-polytopes, their elements are:

Name Schläfli
symbol
Coxeter
diagram
Vertices Edges Faces Cells 4-faces 5-faces Symmetry (order)
6-simplex {3,3,3,3,3} CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 7 21 35 35 21 7 A6 (720)
6-orthoplex {3,3,3,3,4} CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 12 60 160 240 192 64 B6 (46080)
6-cube {4,3,3,3,3} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 64 192 240 160 60 12 B6 (46080)

Uniform 6-polytopes[edit]

Main article: Uniform 6-polytope

Here are six simple uniform convex 6-polytopes, including the 6-orthoplex repeated with its alternate construction.

Name Schläfli
symbol(s)
Coxeter
diagram(s)
Vertices Edges Faces Cells 4-faces 5-faces Symmetry (order)
Expanded 6-simplex t0,5{3,3,3,3,3} CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png 42 210 490 630 434 126 2×A6 (1440)
6-orthoplex, 311
(alternate construction)
{3,3,3,31,1} CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png 12 60 160 240 192 64 D6 (23040)
6-demicube {3,33,1}
h{4,3,3,3,3}
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
32 240 640 640 252 44 D6 (23040)
½B6
Rectified 6-orthoplex t1{3,3,3,3,4}
t1{3,3,3,31,1}
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
60 480 1120 1200 576 76 B6 (46080)
2×D6
221 polytope {3,3,32,1} CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 27 216 720 1080 648 99 E6 (51840)
122 polytope {3,32,2} CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
or CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
72 720 2160 2160 702 54 2×E6 (103680)

The expanded 6-simplex is the vertex figure of the uniform 6-simplex honeycomb, CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png. The 6-demicube honeycomb, CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, vertex figure is a rectified 6-orthoplex and facets are the 6-orthoplex and 6-demicube. The uniform 222 honeycomb,CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png, has 122 polytope is the vertex figure and 221 facets.

References[edit]

  1. ^ a b c Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.
  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Richard Klitzing, 6D, uniform polytopes (polypeta)

External links[edit]