7-demicubic honeycomb

From Wikipedia, the free encyclopedia
Jump to: navigation, search
7-demicubic honeycomb
(No image)
Type Uniform honeycomb
Family Alternated hypercube honeycomb
Schläfli symbol h{4,3,3,3,3,3,4}
Coxeter-Dynkin diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png or CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
Facets {3,3,3,3,3,4}
h{4,3,3,3,3,3}
Vertex figure Rectified heptacross
Coxeter group {\tilde{B}}_7 [4,3,3,3,3,31,1]
{\tilde{D}}_7, [31,1,3,3,3,31,1]

The 7-demicubic honeycomb, or demihepteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 7-space. It is constructed as an alternation of the regular 7-cubic honeycomb.

It is composed of two different types of facets. The 7-cubes become alternated into 7-demicubes h{4,3,3,3,3,3} and the alternated vertices create 7-orthoplex {3,3,3,3,3,4} facets.

D7 lattice[edit]

The vertex arrangement of the 7-demicubic honeycomb is the D7 lattice.[1] The 84 vertices of the rectified 7-orthoplex vertex figure of the 7-demicubic honeycomb reflect the kissing number 84 of this lattice.[2] The best known is 126, from the E7 lattice and the 331 honeycomb.

The D+
7
packing (also called D2
7
) can be constructed by the union of two D7 lattices. The D+
n
packings form lattices only in even dimensions. The kissing number is 26=64 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8).[3]

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png

The D*
7
lattice (also called D4
7
and C2
7
) can be constructed by the union of all four 7-demicubic lattices:[4] It is also the 7-dimensional body centered cubic, the union of two 7-cube honeycombs in dual positions.

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes 01rd.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 01ld.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png.

The kissing number of the D*
7
lattice is 14 (2n for n≥5) and its Voronoi tessellation is a quadritruncated 7-cubic honeycomb, CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 4a4b.pngCDel nodes.png, containing all with tritruncated 7-orthoplex, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png Voronoi cells.[5]

Symmetry constructions[edit]

There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of differened colors on the 128 7-demicube facets around each vertex.

Coxeter group Schläfli symbol Coxeter-Dynkin diagram Vertex figure
Symmetry
Facets/verf
{\tilde{B}}_7 = [31,1,3,3,3,3,4]
= [1+,4,3,3,3,3,3,4]
= h{4,3,3,3,3,3,4} CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[3,3,3,3,3,4]
128: 7-demicube
14: 7-orthoplex
{\tilde{D}}_7 = [31,1,3,3,31,1]
= [1+,4,3,3,3,31,1]
= h{4,3,3,3,3,31,1} CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[35,1,1]
64+64: 7-demicube
14: 7-orthoplex
{\tilde{C}}_7 = [[(4,3,3,3,3,4,2+)]] ht0,7{4,3,3,3,3,3,4} CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png 64+32+32: 7-demicube
14: 7-orthoplex

See also[edit]

References[edit]

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8
    • pp. 154–156: Partial truncation or alternation, represented by h prefix: h{4,4}={4,4}; h{4,3,4}={31,1,4}, h{4,3,3,4}={3,3,4,3}, ...
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Conway JH, Sloane NJH (1998). Sphere Packings, Lattices and Groups (3rd ed.). ISBN 0-387-98585-9. 

Notes[edit]

  1. ^ http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D7.html
  2. ^ Sphere packings, lattices, and groups, by John Horton Conway, Neil James Alexander Sloane, Eiichi Bannai [1]
  3. ^ Conway (1998), p. 119
  4. ^ http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Ds7.html
  5. ^ Conway (1998), p. 466

External links[edit]