ARGUS distribution

From Wikipedia, the free encyclopedia
Jump to: navigation, search
ARGUS
Parameters c > 0 cut-off (real)
χ > 0 curvature (real)
Support x \in (0, c)\!
pdf see text
CDF see text
Mean \mu = c\sqrt{\pi/8}\;\frac{\chi e^{-\frac{\chi^2}{4}} I_1(\tfrac{\chi^2}{4})}{ \Psi(\chi) }

where I1 is the Modified Bessel function of the first kind of order 1, and \Psi(x) is given in the text.
Mode \frac{c}{\sqrt2\chi}\sqrt{(\chi^2-2)+\sqrt{\chi^4+4}}
Variance c^2\!\left(1 - \frac{3}{\chi^2} + \frac{\chi\phi(\chi)}{\Psi(\chi)}\right) - \mu^2

In physics, the ARGUS distribution, named after the particle physics experiment ARGUS,[1] is the probability distribution of the reconstructed invariant mass of a decayed particle candidate[clarification needed] in continuum background[clarification needed].

Definition[edit]

The probability density function of the ARGUS distribution is:


f(x; \chi, c ) = \frac{\chi^3}{\sqrt{2\pi}\,\Psi(\chi)} \cdot
                 \frac{x}{c^2} \sqrt{1-\frac{x^2}{c^2}}
                 \exp\bigg\{ -\frac12 \chi^2\Big(1-\frac{x^2}{c^2}\Big) \bigg\},

for 0 ≤ x < c. Here χ, and c are parameters of the distribution and

\Psi(\chi) = \Phi(\chi)- \chi \phi( \chi ) - \tfrac{1}{2} ,

and Φ(·), ϕ(·) are the cumulative distribution and probability density functions of the standard normal distribution, respectively.


Differential equation


\left\{c^2 x (c-x) (c+x) f'(x)+f(x) \left(-c^4-c^2 \left(\chi ^2-2\right)
       x^2+\chi ^2 x^4\right)=0,f(1)=-\frac{\sqrt{2-\frac{2}{c^2}} \chi ^3
       e^{\frac{\chi ^2}{2 c^2}}}{c^2 \left(\sqrt{2} \chi -\sqrt{\pi }
       e^{\frac{\chi ^2}{2}} \text{erf}\left(\frac{\chi
      }{\sqrt{2}}\right)\right)}\right\}

Cumulative distribution function[edit]

The cdf of the ARGUS distribution is

F(x) = 1 - \frac{\Psi\Big(\chi\sqrt{1-x^2/c^2}\,\Big)}{\Psi(\chi)}.

Parameter estimation[edit]

Parameter c is assumed to be known (the speed of light), whereas χ can be estimated from the sample X1, …, Xn using the maximum likelihood approach. The estimator is a function of sample second moment, and is given as a solution to the non-linear equation

1 - \frac{3}{\chi^2} + \frac{\chi\phi(\chi)}{\Psi(\chi)} = \frac{1}{n}\sum_{i=1}^n \frac{x_i^2}{c^2}.

The solution exists and is unique, provided that the right-hand side is greater than 0.4; the resulting estimator \scriptstyle\hat\chi is consistent and asymptotically normal.

Generalized ARGUS distribution[edit]

Sometimes a more general form is used to describe a more peaking-like distribution:


 f(x) = \frac{2^{-p}\chi^{2(p+1)}}{\Gamma(p+1)-\Gamma(p+1,\,\tfrac{1}{2}\chi^2)} \cdot
        \frac{x}{c^2} \bigg( 1 - \frac{x^2}{c^2} \bigg)^p
        \exp\bigg\{ -\frac12 \chi^2\Big(1-\frac{x^2}{c^2}\Big) \bigg\},
        \qquad 0 \leq x \leq c,

where Γ(·) is the gamma function, and Γ(·,·) is the upper incomplete gamma function.

Here parameters c, χ, p represent the cutoff, curvature, and power respectively.

mode = \frac{c}{\sqrt2\chi}\sqrt{(\chi^2-2p-1)+\sqrt{\chi^2(\chi^2-4p+2)+(1+2p)^2}}

p = 0.5 gives a regular ARGUS, listed above.

References[edit]

  1. ^ Albrecht, H. (1990). "Search for hadronic b→u decays". Physics Letters B 241 (2): 278–282. Bibcode:1990PhLB..241..278A. doi:10.1016/0370-2693(90)91293-K.  edit (More formally by the ARGUS Collaboration, H. Albrecht et al.) In this paper, the function has been defined with parameter c representing the beam energy and parameter p set to 0.5. The normalization and the parameter χ have been obtained from data.

Further reading[edit]

  • Albrecht, H. (1994). "Measurement of the polarization in the decay B → J/ψK*". Physics Letters B 340 (3): 217–220. Bibcode:1994PhLB..340..217A. doi:10.1016/0370-2693(94)01302-0.  edit
  • Pedlar, T.; Cronin-Hennessy, D.; Hietala, J.; Dobbs, S.; Metreveli, Z.; Seth, K.; Tomaradze, A.; Xiao, T.; Martin, L. (2011). "Observation of the hc(1P) Using e+e Collisions above the DD Threshold". Physical Review Letters 107 (4). arXiv:1104.2025. Bibcode:2011PhRvL.107d1803P. doi:10.1103/PhysRevLett.107.041803.  edit
  • Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Y. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M. (2010). "Search for Charged Lepton Flavor Violation in Narrow Υ Decays". Physical Review Letters 104 (15). arXiv:1001.1883. Bibcode:2010PhRvL.104o1802L. doi:10.1103/PhysRevLett.104.151802.  edit