Absolute color space

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In color science, there are two meanings of the term absolute color space:

  • A color space in which the perceptual difference between colors is directly related to distances between colors as represented by points in the color space.[1][2]
  • A color space in which colors are unambiguous, that is, where the interpretations of colors in the space are colorimetrically defined without reference to external factors.[3][4]

In this article, we concentrate on the second definition.

CIEXYZ and sRGB are examples of absolute color spaces, as opposed to a generic RGB color space.

A non-absolute color space can be made absolute by defining its relationship to absolute colorimetric quantities. For instance, if the red, green, and blue colors in a monitor are measured exactly, together with other properties of the monitor, then RGB values on that monitor can be considered as absolute. The L*a*b* is sometimes referred to as absolute, though it also needs a white point specification to make it so.[5]

A popular way to make a color space like RGB into an absolute color is to define an ICC profile, which contains the attributes of the RGB. This is not the only way to express an absolute color, but it is the standard in many industries. RGB colors defined by widely accepted profiles include sRGB and Adobe RGB. The process of adding an ICC profile to a graphic or document is sometimes called tagging or embedding; tagging therefore marks the absolute meaning of colors in that graphic or document.

Conversion[edit]

Main article: Color translation

A color in one absolute color space can be converted into another absolute color space, and back again, in general; however, some color spaces may have gamut limitations, and converting colors that lie outside that gamut will not produce correct results. There are also likely to be rounding errors, especially if the popular range of only 256 distinct values per component (8-bit color) is used.

One part of the definition of an absolute color space is the viewing conditions. The same color, viewed under different natural or artificial lighting conditions, will look different. Those involved professionally with color matching may use viewing rooms, lit by standardized lighting.

Occasionally, there are precise rules for converting between non-absolute color spaces. For example HSL and HSV spaces are defined as mappings of RGB. Both are non-absolute, but the conversion between them should maintain the same color. However, in general, converting between two non-absolute color spaces (for example, RGB to CMYK) or between absolute and non-absolute color spaces (for example, RGB to L*a*b*) is almost a meaningless concept.

Arbitrary spaces[edit]

A different method of defining absolute color spaces is familiar to many consumers as the swatch card, used to select paint, fabrics, and the like. This is a way of agreeing a color between two parties. A more standardized method of defining absolute colors is the Pantone Matching System, a proprietary system that includes swatch cards and recipes that commercial printers can use to make inks that are a particular color.

References[edit]

  1. ^ Hans G. Völz (2001). Industrial Color Testing: Fundamentals and Techniques. Wiley-VCH. ISBN 3-527-30436-3. 
  2. ^ Gunter Buxbaum and Gerhard Pfaff (2005). Industrial Inorganic Pigments. Wiley-VCH. ISBN 3-527-30363-4. 
  3. ^ Jonathan B. Knudsen (1999). Java 2D Graphics. O'Reilly. ISBN 1-56592-484-3. 
  4. ^ Bernice Ellen Rogowitz, Thrasyvoulos N Pappas and Scott J Daly (2007). Human Vision and Electronic Imaging XII. SPIE. ISBN 0-8194-6605-0. 
  5. ^ Yud-Ren Chen, George E. Meyer, and Shu-I. Tu (2005). Optical Sensors and Sensing Systems for Natural Resources and Food Safety and Quality. SPIE. ISBN 0-8194-6020-6.