Non-cellular life

From Wikipedia, the free encyclopedia
  (Redirected from Acellular)
Jump to: navigation, search
This article is about non-cellular organisms. For cell-like, non-cell structures, see Syncytium.

Non-cellular life is life that exists without a cellular structure. This term presumes the phylogenetic scientific classification of viruses as lifeforms,[1] which is a controversial issue.[2][3][4]

Hypothesized artificial life, self-replicating machines, and most simple molecules capable of self-replication are not usually considered living. (See definition of life.)

Some biologists refer to wholly syncytial organisms as "acellular"[citation needed] because their bodies contain multiple nuclei which are not separated by cell membranes, however these cell-bound organisms are outside the scope of the present article.


For about 100 years, the scientific community has repeatedly changed its collective mind over what viruses are. First seen as poisons, then as life-forms, then biological chemicals, and today many scientists think of viruses as existing at the border between chemistry and life: a gray area between living and nonliving.[2][3]

The issue of life without cellular structure came again to the fore with the 2003 discovery that the large and complex Mimivirus can synthesize proteins.[5] This discovery suggests the possibility that some viruses may have evolved from earlier forms that could produce proteins independent of a host cell.[6] If so, there may at one time have been a viral domain of life. It is not clear that all small[2] viruses have originated from more complex viruses by means of genome size reduction. A viral domain of life may only be relevant to certain large viruses such as nucleocytoplasmic large DNA viruses like the Mimivirus.[7] A 2012 study suggests that the giant viruses, such as Mimivirus, are a separate domain of life, alongside the traditional three of eukarya, prokarya and archaea, by studying the protein folding structure made by the viruses.[8] The study concluded that giant viruses have evolved from more complex organisms into their highly parasitic form, and are an ancient lineage, alongside that of the other domains.[8]

Viral self-assembly has implications for the study of the origin of life,[9] as it lends further credence to the hypothesis that life could have started as self-assembling organic molecules.[10][11]


Main article: Virus

In discussing the taxonomic domains of life, the terms 'Acytota' or 'Aphanobionta' are occasionally used as the name of a viral kingdom, domain, or empire. The corresponding cellular life name would be Cytota. Non-cellular organisms and cellular life would be the two top-level subdivisions of life, whereby life as a whole would be known as organisms, Naturae, or Vitae. The Taxon Cytota would include three top-level subdivisions of its own, the Domains Bacteria, Archaea, and Eukarya.


Main article: Viroid

Viroids are the smallest infectious pathogens known, consisting solely of short strands of circular, single-stranded RNA without protein coats. They are mostly plant pathogens, some of which are of economical importance. Viroid genomes are extremely small in size, ranging from 246 to 467 nucleobases. In comparison, the genome of the smallest known viruses capable of causing an infection by themselves are around 2,000 nucleobases in size. Viroids are the first known representatives of a new biological domain of sub-viral pathogens.[12][13]

Viroid RNA does not code for any protein.[14] Its replication mechanism uses RNA polymerase II, a host cell enzyme normally associated with synthesis of messenger RNA from DNA, which instead catalyzes "rolling circle" synthesis of new RNA using the viroid's RNA as template. Some viroids are ribozymes, having catalytic properties which allow self-cleavage and ligation of unit-size genomes from larger replication intermediates.[15]

With Diener’s 1989 hypothesis[16]—that viroids may represent “living relics” from a hypothetical, ancient, and non-cellular RNA world before the evolution of DNA or protein—--viroids have attained significance far beyond plant virology to evolutionary biology, by representing plausible molecules capable of explaining crucial intermediate steps in the evolution of life from inanimate matter (Abiogenesis).[17]

While Diener’s hypothesis was dormant for 25 years, it has recently been resurrected in a review article[18]and as a popularized version by a New York Times science writer, in which, however, the author mistakenly credits the "living relics" hypothesis of viroids to Flores et al.[19]

See also[edit]


  1. ^ "What is Non-Cellular Life?". Wise Geek. Conjecture Corporation. 2009. Retrieved 2009-08-02. 
  2. ^ a b c Villarreal, Luis P. (December 2004). "Are Viruses Alive?". Scientific American. Retrieved 2013-04-27. 
  3. ^ a b Forterre, Patrick (3 March 2010). "Defining Life: The Virus Viewpoint". Orig Life Evol Biosph. 40 (2): 151–160. doi:10.1007/s11084-010-9194-1. PMC 2837877. PMID 20198436. 
  4. ^ Greenspan, Neil (28 January 2013). "Are Viruses Alive?". The Evolution & Medicine Review. Retrieved 2013-04-27. 
  5. ^ The Mimivirus protein involved in translation
  6. ^ Luis P. Villarreal (2005). Viruses and the Evolution of Life. New York ASM Press.
  7. ^ American Scientist, "Giant Viruses", James L. Van Etten, July–August 2011, Volume 99, Number 4
  8. ^ a b, "Giant Viruses Are Ancient Living Organisms, Study Suggests", 14 September 2012
  9. ^ Koonin EV; Senkevich TG; Dolja VV (2006). "The ancient Virus World and evolution of cells". Biol. Direct 1: 29. doi:10.1186/1745-6150-1-29. PMC 1594570. PMID 16984643. Retrieved 2009-08-01. 
  10. ^ Vlassov AV; Kazakov SA; Johnston BH; Landweber LF (August 2005). "The RNA world on ice: a new scenario for the emergence of RNA information". J. Mol. Evol. 61 (2): 264–73. doi:10.1007/s00239-004-0362-7. PMID 16044244. 
  11. ^ author-amp=yes, Mark D.; Vladimir A. Otroshchenkob; Salvatore Santoli (1997). "Emerging Concepts of Self-organization and the Living State". Biosystems 42 (2–3): 111–118. doi:10.1016/S0303-2647(96)01699-1. PMID 9184757. Retrieved 2009-08-02. 
  12. ^ Diener TO (August 1971). "Potato spindle tuber "virus". IV. A replicating, low molecular weight RNA". Virology 45 (2): 411–28. doi:10.1016/0042-6822(71)90342-4. PMID 5095900. 
  13. ^ "ARS Research Timeline – Tracking the Elusive Viroid". 2006-03-02. Retrieved 2007-07-18. 
  14. ^ Tsagris EM, de Alba AE, Gozmanova M, Kalantidis K (September 2008). "Viroids". Cell. Microbiol. 10 (11): 2168–79 doi:10.1111/j.1462-5822.2008.01231.x. PMID 18764915.
  15. ^ Daròs JA, Elena SF, Flores R (2006). "Viroids: an Ariadne's thread into the RNA labyrinth". EMBO Rep. 7 (6): 593–8. doi:10.1038/sj.embor.7400706. PMC 1479586. PMID 16741503
  16. ^ Diener, T.O.(1989)."Circular RNAs: Relics of precellular evolution?".Proc.Natl.Acad.Sci.USA 86: 9370–9374. Retrieved November 1, 2014
  17. ^ Villarreal, Luis P. (2005). Viruses and the evolution of life. Washington, D.C.: ASM Press. p. 31. ISBN 1555813097. 
  18. ^ Flores, R., Gago-Zachert, S., Serra, P., Sanjuan, R., Elena, S.F. (2014). "Viroids: Survivors from the RNA World?". Annual Review of Microbiology 68: 395–414. Retrieved November 1, 2014.
  19. ^ Zimmer, Carl (September 25, 2014). "A Tiny Emissary From the Ancient Past.". New York Times. Retrieved November 22, 2014.