Acoustic holography

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Acoustic holography is a method that is used to estimate the sound field near a source by measuring acoustic parameters away from the source via an array of pressure and/or particle velocity transducers. Measuring techniques included within acoustic holography are becoming increasingly popular in various fields, most notably those of transportation, vehicle and aircraft design, and NVH (Noise, vibration, and harshness). The general idea of acoustic holography has led to different versions such as near-field acoustic holography (NAH) and statistically optimal near-field acoustic holography (SONAH). For audio rendition, the wave field synthesis is the most related procedure.

References[edit]

  • J. D. Maynard, E. G. Williams, and Y. Lee (October 1985). "Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH". The Journal of the Acoustical Society of America 78 (4): 1395–1413. Bibcode:1985ASAJ...78.1395M. doi:10.1121/1.392911. 
  • J. Hald. "Patch near-field acoustical holography using a new statistically optimal method". "Inter-noise 2003, Jeju International Convention Center, Seogwipo, Korea, 2003-08-25–2003-08-28". 

External links[edit]