Active packaging

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The terms active packaging, intelligent packaging, and smart packaging refer to packaging systems used with foods, pharmaceuticals, and several other types of products. They help extend shelf life, monitor freshness, display information on quality, improve safety, and improve convenience.

The terms are closely related. Active packaging usually means having active functions beyond the inert passive containment and protection of the product.[1] Intelligent and smart packaging usually involve the ability to sense or measure an attribute of the product, the inner atmosphere of the package, or the shipping environment. This information can be communicated to users or can trigger active packaging functions.

Depending on the working definitions, some traditional types of packaging might be considered as "active" or "intelligent". More often, the terms are used with new technologically advanced systems: microelectronics, computer applications, nanotechnology, etc.

Moisture control[edit]

Main article: Desiccant

For many years, desiccants have been used to actively control the water vapor in a closed package. A desiccant is a hygroscopic substance usually in a porous pouch or sachet which is placed inside a sealed package. They have been used to reduce corrosion of machinery and electronics and to extend the shelf life of moisture sensitive foods and drugs.

Corrosion[edit]

Corrosion inhibitors can be applied to items to help prevent rust and corrosion. Volatile corrosion inhibitors (VCI) or vapor phase corrosion inhibitors can be provided inside a package in a pouch or can be incorporated in a saturated overwrap of special paper. Many of these are organic salts that condense on the metal to resist corrosion. Some films also have VCI emitting capability.

Films are available with copper ions in the polymer structure, These neutralize the corrosive gas in a package and deter rust.

VCI create a neutral environment in the packaging. It works on the principle of difference in vapour pressure and causes reaction with Metals and Non metals and also with Moisture to render it active to corrosion. There are different forms of VCI's available like Papers, Plastics, HDPE Papers, Oils, Foams, Bubble, Emitters etc. that can prevent corrosion at many stages.

Oxygen control[edit]

Oxygen scavengers or oxygen absorbers help remove oxygen from a closed package. Some are small packets or sachets containing powdered iron: as the iron rusts, oxygen is removed from the surrounding atmosphere. Newer systems are on cards or can be built into package films or molded structures.[2] In addition, the physical characteristics of the packaging itself (oxygen transmission rate - OTR) can dictate how effective an oxygen absorber can be, and how long it will stay effective. Packaging with a low OTR will let less oxygen in the closed package through the polymer barrier itself.[3]

Atmosphere[edit]

Main article: Modified atmosphere

With some products, such as cheese, it has long been common to flush the package with nitrogen prior to sealing: the inert nitrogen is absorbed into the cheese, allowing a tight shrink film package. The nitrogen removes oxygen and "actively" interacts with the cheese to make the package functional.

More recently, other mixtures of gas have been used inside the package to extend the shelf life. The gas mixture depends on the specific product and its degradation mechanisms. Some package components have been developed that incorporate active chemistry to help maintain certain atmospheres in packages.

Oxygen scavengers, carbon dioxide generators, ethanol generators, etc. are available to help keep the atmosphere in a package at specified conditions.

Temperature monitor[edit]

Some temperature indicators give a visual signal that a specified temperature has been exceeded. Others, Time temperature indicators, signal when a critical accumulation of temperature deviation over time has been exceeded. When the mechanism of the indicator is tuned to the mechanism of product degradation, these can provide valuable signals for consumers.

Typical alarm sensors for the pharmaceutical and market cost between $15 and $25[4] and therefore are not cost efficient for manufacturers, producers, or consumers. ThinFilm Electronics ASA, a Norwegian printed electronics company, is working on low-cost sensors containing rewritable memory that will be used to wirelessly monitor perishable food and pharmaceuticals.[5] ThinFilm is looking to make these temperature indicators commercially available for food, consumer product and healthcare companies worldwide so they are able to collect and wirelessly communicate sensor information increasing confidence of optimal product quality.[6]

Digital temperature data loggers record the temperatures encountered throughout the shipment. This data can be used to predict product degradation and help determine if the product is suited for normal sale or if expedited sale is required. They also determine the time of the temperature excess: this can be used to direct corrective action.

Thermochromic inks are sometimes used to signal temperature excess or change. Some are reversible while others have a permanent change of color. These can be used alone or with other packaging functions such as barcodes.

The inks can also signal a desired temperature for consumers. For example, one type of beer can has ink that graphically shows when an ideal drinking temperature is achieved.[7]

Controlling package temperatures[edit]

Self-heating field rations for up to 18 soldiers

For critical vaccines, insulated shipping containers are passive packaging to help control the temperatures fluctuations seen even with a controlled cold chain. In addition, gel packs are often used to actively keep the temperature of the contents within specified acceptable temperature ranges.

Some newer packages have the ability to heat or cool the product for the consumer. These have segregated compartments where exothermic or endothermic reactions provide the desired effect.[8] Self-heating cans are available for several products.

Dispensing systems[edit]

Some packages have closures or other dispensing systems that actively change the contents from a liquid to an aerosol. These are used for products ranging from precision inhalers for medications to spray bottles of household cleaners.

Some dispensing packages for two-part epoxy adhesives do more than passively contain the two components. When dispensed, some packages meter and mix the two components so the adhesive is fully functioning at the point of application.

RFID[edit]

Radio-frequency identification chips are becoming more common as smart labels that are used to track and trace packages and unit loads throughout distribution. Newer developments include recording the temperature history of shipments and other intelligent packaging functions.

Security[edit]

A variety of security printing methods, security holograms, and specialized labels are available to help confirm that the product in the package is not counterfeit. RFID chips are being used in this application also.

Electronic article surveillance (on the product or on the package) is used to help counter shoplifting.

Microwave packaging[edit]

Metallised films are used as a susceptor for cooking in microwave ovens. These increase the heating capacity and help make foods crisp and brown. Plastic microwavable[9] containers are also used for microwave cooking.

Shock and vibration[edit]

Shock detectors have been available for many years. These are attached to the package or to the product in the package to determine if an excessive shock has been encountered. The mechanisms of these shock overload devices have been spring-mass systems, magnets, drops of red dye, and several others.

Recently, digital shock and vibration data loggers have been available to more accurately record the shocks and vibrations of shipment. These are used to monitor critical shipments to determine if extra inspection and calibration is required. They are also used to monitor the types of shocks and vibrations encountered in transit for use in package testing in a laboratory.

Other developments[edit]

Some engineered packaging films contain enzymes, anti-bacterial agents, scavengers, and other active components to help control food degradation and extend shelf life.[10]

Edible films have been developed to allow consumers to eat the package along with the product.

Regulations[edit]

Active packaging is often designed to actively interact with the contents of the package. Thus extra care is often needed for active or smart packagings that are food contact materials.[11]

Food packagers take extra care with some types of active packaging. For example when the oxygen atmosphere in a package is reduced for extending shelf life, controls for anaerobic bacteria need to be considered. Also when a controlled atmosphere reduces the appearance of food degradation, consumers need to retain a means of determining whether actual degradation is present.

See also[edit]

References[edit]

  1. ^ Soroka, W (2008). Illustrated Glossary of Packaging Terms. Institute of Packaging Professionals. p. 3. ISBN 1-930268-27-0. 
  2. ^ 5660761 A US US 5660761 A, Katsumoto, Kiyoshi, "Oxygen scavenging layer consisting of oxidizable compound, second, separate layer consisting of oxidation catalyst", published 26 Aug, 1997 
  3. ^ Cichello, Simon. "A Guide to Oxygen Absorbers". Retrieved March 2010. 
  4. ^ "Thinfilm and PST To Jointly Develop Printed Temperature Tags To Monitor Food And Other Perishable Goods". ThinFilm. 
  5. ^ "ThinFilm Pairs Up With Packaging Giant Bemis To Create Labels That Know Things". Forbes. 
  6. ^ "ThinFilm Printed Electronics Selected For Smart Packaging". EE Times. 
  7. ^ Lingle, R (June 2007). "Coors’ label shows beer temperature". Packaging World. Archived from the original on 11 March 2010. Retrieved 8 April 2010. 
  8. ^ "Self-heating can". Stress Engineering. 2010. Retrieved 8 April 2010. 
  9. ^ "Plastic Microwaveable Packets". 
  10. ^ Hotchkiss, J. H. "Forum - Trendsetters". Food Tech Source. Retrieved 8 April 2010. 
  11. ^ "A03039: Active packaging - current trends and potential for migration". Food Standards Agency. 7 September 2004. Retrieved 8 April 2010. [dead link]

Books, General References[edit]

  • Brody, A. L., “Active Packaging for Food Applications”, CRC Press, 2001
  • Kerry, J, and Butler, P, "Smart Packaging Technologies for Fast Moving Consumer Goods", Wiley, ISBN 978-0-470-02802-5