Acyl-CoA thioesterase 9

From Wikipedia, the free encyclopedia
Jump to: navigation, search


Acyl-CoA thioesterase 9 is a protein that is encoded by the human ACOT9 gene. It is a member of the acyl-CoA thioesterase superfamily, which is a group of enzymes that hydrolyze Coenzyme A esters. There is no known function, however it has been shown to act as a long-chain thioesterase at low concentrations, and a short-chain thioesterase at high concentrations.[1]

Gene[edit]

Depiction of ACOT9 gene

Locus[edit]

The ACOT9 gene is located at p22.11 on chromosome X. Located on the minus strand of the chromosome, the start is at 23,721,777 bp and the end is at 23,761,407 bp, which is a span of 39,631 base pairs.[2]

ACOT9 location on the human chromosome X

Aliases[edit]

ACOT9 gene is known primarily for encoding the Acyl-CoA thioesterase 9 protein. Other, less commonly used names for the gene are ACATE2,[3] and MT-ACT48.[4]

Homology/Evolution[edit]

Divergence of Sequence Identity (%) vs. Time (MYA) in ACOT9

Orthologs[edit]

There are many orthologs of ACOT9, the house mouse (Mus musculus) being one of the most similar, where the ACOT9 gene is found at 72.38cM on chromosome X.[5] The range of orthologs extends to mammals, birds, amphibians, anamorphic fungi, and others.[citation needed]

Sequence number Genus and species Common name Date of divergence (MYA) Accession number Sequence length Sequence identity Sequence similarity Notes
1 Homo sapiens Human 0 NP_001028755.2 439 100% 100% Human
2 Mus musculus House mouse 91 NP_062710.2 439 83% 90% Rodent
3 Pteropus alecto Black flying fox 97.4 XP_006911668.1 480 81% 91% Bat
4 Gallus gallus Chicken 324.5 NP_001012841.1 425 69% 87% Bird
5 Pseudopodoces humilis Ground tit 324.5 XP_005516751.1 417 68% 85% Bird
6 Columba livia Rock dove 324.5 XP_005503782.1 402 67% 86% Bird
7 Geospiza fortis Medium ground finch 324.5 XP_005424946.1 417 67% 85% Bird
8 Pelodiscus sinensis Chinese soft shelled turtle 324.5 XP_006112565.1 439 67% 85% Reptile
9 Xenopus tropicalis Western clawed frog 361.2 AAI61600.1 418 65% 82% Amphibian
10 Danio rerio Zebrafish 454.6 AAI59216.1 434 60% 80% Fish
11 Ceratitis capitata Mediterranean fruit fly 910 JAB97119.1 433 32% 58% Insect
12 Glarea lozoyensis 74030 Anamorphic fungus 1368 EHL00310.1 350 24% 47% Fungus
Conservation of ACOT9 gene between H. sapiens, G. lozoyensis, and C. capitata

Paralogs[edit]

In mice, which is one of the closest orthologs, ACOT10 is a known paralog of the ACOT9 gene.[6]

Expression[edit]

ACOT9 expression chart

Expression of the ACOT9 is ubiquitous throughout the tissues in humans. Tissues with a value of over 500 in the large-scale analysis of the human transcriptome were the globus pallidus and colorectal adenocarcinoma.[7] The expressed sequence tag (or EST) abundance profile also shows ubiquitous/near ubiquitous, expression throughout human tissues.[8]

Transcription factors[edit]

There are numerous transcription factors throughout the ACOT9 promotor sequence. Some of the notable factors are heat shock factors and transcription factor II B (TFIIB) recognition elements.[citation needed]

Transcription factor Start End Strand Sequence
X gene core promotor element 1 683 693 - ggGCGGgaccg
Doublesex and mab-3 related transcription factor 1 81 101 + tttttttgagacaTTGTctcc
cAMP-responsive element binding protein 1 491 511 - agggcgTGACgtcgagaagag
Sp4 transcription factor 660 676 - ccagggGGCGtggccgc
Stimulating protein 1, ubiquitous zinc finger transcription factor 682 698 - tccggGGGCgggaccgc
Heat shock factor 1 24 48 + caggactaaactAGAAtctccagcc
E2F transcription factor 2 808 824 + ccatcGCGCgcacggca
Nuclear factor of activated T-cells 5 380 398 + tttGGAAagttgcccagga
ZF5 POZ domain zinc finger, zinc finger protein 161 (secondary DNA binding preference) 811 825 + tcgCGCGcacggcag
B-cell-specific activator protein 678 706 - cagcggtgtccgggGGCGggaccgcggcg
Pax-6 paired domain binding site 54 72 + gtctcAAGCatcagttttt
ZF5 POZ domain zinc finger, zinc finger protein 161 (secondary DNA binding preference) 651 665 - ggcCGCGctgtgccg
Pax-6 paired domain binding site 758 776 + ttttaTCGCctcagtttcc
Mammalian C-type LTR TATA box 751 767 - ggcgaTAAAagacgcac
Nuclear factor Y (Y-box binding factor) 624 638 + cccgCCAAtgaacgg
Transcription factor II B (TFIIB) recognition element 356 362 + ccgCGCC
Transcription factor II B (TFIIB) recognition element 440 446 - ccgCGCC
Transcription factor II B (TFIIB) recognition element 734 740 - ccgCGCC
Nuclear factor Y (Y-box binding factor) 581 595 - ccacTCAAtcagttg
CCAAT/enhancer binding protein alpha 529 543 - tcggttgaGTAAacg

Secondary structure[edit]

There are two regions in the ACOT9 gene sequence that are labeled as BFIT (Brown Fat Inducible Thioesterase) and BACH (Brain Acyl CoA Hydrolase) regions. These regions are part of a hotdog fold superfamily, which has been found to be used in a variety of cell roles.[9] Predictions show there to be various alpha-helices throughout the structure,[10] suggesting it is a transmembrane protein.

Interactions[edit]

A mitochondrial cleavage site can be found at amino acid 30 in the ACOT9 sequence, and the probability of export to the mitochondria is 0.9374.[11] The Acyl-CoA thioesterase 9 protein is estimated to be 60.9% mitochondrial, 21.7% cytoplasmic, 8.7% nuclear, 4.3% in the plasma membrane, and 4.3% in the endoplasmic reticulum.[12]

The ACOT9 protein has been found to interact with the following proteins either experimentally or through co-expression:[13]

References[edit]

  1. ^ Tillander V, Arvidsson Nordström E, Reilly J, Strozyk M, Van Veldhoven PP, Hunt MC, Alexson SE (2014). "Acyl-CoA thioesterase 9 (ACOT9) in mouse may provide a novel link between fatty acid and amino acid metabolism in mitochondria". Cellular and Molecular Life Sciences : CMLS 71 (5): 933–48. doi:10.1007/s00018-013-1422-1. PMID 23864032. 
  2. ^ Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (June 12, 2002). "Human Feb. 2009 (GRCh37/hg19) Assembly". The human genome browser at UCSC. UCSC Genome Bioinformatics. Retrieved March 12, 2014. 
  3. ^ Gu J, MacHugh DE, McGivney BA, Park SD, Katz LM, Hill EW (2010). "Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses". Equine Veterinary Journal. Supplement (38): 569–75. doi:10.1111/j.2042-3306.2010.00181.x. PMID 21059062. 
  4. ^ Poupon V, Bègue B, Gagnon J, Dautry-Varsat A, Cerf-Bensussan N, Benmerah A (1999). "Molecular cloning and characterization of MT-ACT48, a novel mitochondrial acyl-CoA thioesterase". The Journal of Biological Chemistry 274 (27): 19188–94. doi:10.1074/jbc.274.27.19188. PMID 10383425. 
  5. ^ "ACOT9 gene detail". Mouse Genome Database. Retrieved 2014-06-19. 
  6. ^ "Gene: Acot9". Ensembl release 75. 
  7. ^ "Large-scale analysis of the human transcriptome (HG-U133A)". National Center for Biotechnology Information. Retrieved 10 May 2014. 
  8. ^ "EST Profile Hs.298885 - ACOT9: Acyl-CoA thioesterase 9". Retrieved 10 May 2014. 
  9. ^ Dillon SC, Bateman A (2004). "The Hotdog fold: wrapping up a superfamily of thioesterases and dehydratases". BMC Bioinformatics 5: 109. doi:10.1186/1471-2105-5-109. PMC 516016. PMID 15307895. 
  10. ^ "SDSC Biology WorkBench 3.2 Pele Program". [dead link]
  11. ^ Claros MG, Vincens P (1996). "Computational method to predict mitochondrially imported proteins and their targeting sequences". European Journal of Biochemistry / FEBS 241 (3): 779–86. doi:10.1111/j.1432-1033.1996.00779.x. PMID 8944766. 
  12. ^ "PSORTII Prediction Tool". [verification needed]
  13. ^ Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009). "STRING 8--a global view on proteins and their functional interactions in 630 organisms". Nucleic Acids Research 37 (Database issue): D412–6. doi:10.1093/nar/gkn760. PMC 2686466. PMID 18940858.