Thresholding (image processing)

From Wikipedia, the free encyclopedia
  (Redirected from Adaptive thresholding)
Jump to: navigation, search
Original image
Example of a threshold effect used on an image

Thresholding is the simplest method of image segmentation. From a grayscale image, thresholding can be used to create binary images (Shapiro, et al. 2001:83).

Categorizing thresholding Methods[edit]

Sezgin and Sankur (2004) categorize thresholding methods into the following six groups based on the information the algorithm manipulates (Sezgin et al., 2004):

  • Histogram shape-based methods, where, for example, the peaks, valleys and curvatures of the smoothed histogram are analyzed
  • Clustering-based methods, where the gray-level samples are clustered in two parts as background and foreground (object), or alternately are modeled as a mixture of two Gaussians
  • Entropy-based methods result in algorithms that use the entropy of the foreground and background regions, the cross-entropy between the original and binarized image, etc.
  • Object Attribute-based methods search a measure of similarity between the gray-level and the binarized images, such as fuzzy shape similarity, edge coincidence, etc.
  • Spatial methods [that] use higher-order probability distribution and/or correlation between pixels
  • Local methods adapt the threshold value on each pixel to the local image characteristics.

Multiband thresholding[edit]

Colour images can also be thresholded. One approach is to designate a separate threshold for each of the RGB components of the image and then combine them with an AND operation. This reflects the way the camera works and how the data is stored in the computer, but it does not correspond to the way that people recognize colour. Therefore, the HSL and HSV colour models are more often used; note that since hue is a circular quantity it requires circular thresholding. It is also possible to use the CMYK colour model (Pham et al., 2007).

See also[edit]

Citations[edit]

  • Pham N, Morrison A, Schwock J et al. (2007). Quantitative image analysis of immunohistochemical stains using a CMYK color model. Diagn Pathol. 2:8.
  • Shapiro, Linda G. & Stockman, George C. (2002). "Computer Vision". Prentice Hall. ISBN 0-13-030796-3
  • Mehmet Sezgin and Bulent Sankur, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging 13(1), 146–165 (January 2004). doi:10.1117/1.1631315

References and further reading[edit]

  • Gonzalez, Rafael C. & Woods, Richard E. (2002). Thresholding. In Digital Image Processing, pp. 595–611. Pearson Education. ISBN 81-7808-629-8