Aldolase A

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Aldolase A, fructose-bisphosphate
Fructose-1,6-bisphosphate aldolase 4ALD wpmp.png
PDB rendering based on 4ALD.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols ALDOA ; ALDA; GSD12
External IDs OMIM103850 MGI87994 HomoloGene123896 ChEMBL: 2106 GeneCards: ALDOA Gene
EC number 4.1.2.13
RNA expression pattern
PBB GE ALDOA 200966 x at tn.png
PBB GE ALDOA 214687 x at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 226 11674
Ensembl ENSG00000149925 ENSMUSG00000030695
UniProt P04075 P05064
RefSeq (mRNA) NM_000034 NM_001177307
RefSeq (protein) NP_000025 NP_001170778
Location (UCSC) Chr 16:
30.06 – 30.08 Mb
Chr 7:
126.8 – 126.8 Mb
PubMed search [1] [2]
fructose-bisphosphate aldolase
Identifiers
EC number 4.1.2.13
CAS number 9024-52-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO

Aldolase A is an enzyme that catalyses a reversible aldol reaction: The substrate, fructose 1,6-bisphosphate (F-1,6-BP) is broken down into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). This reaction is a part of glycolysis. Three fructose-bisphosphate aldolase isozymes (A, B, and C), encoded by three different genes, are differentially expressed during development. Aldolase A is found in the developing embryo and is produced in even greater amounts in adult muscle. Aldolase A expression is repressed in adult liver, kidney, and intestine and similar to aldolase C levels in brain and other nervous tissue. Aldolase A deficiency has been associated with myopathy and hemolytic anemia. Alternative splicing of this gene results in multiple transcript variants that encode the same protein.[1]

β-D-fructose 1,6-phosphate fructose-bisphosphate aldolase D-glyceraldehyde 3-phosphate dihydroxyacetone phosphate
Beta-D-fructose-1,6-bisphosphate wpmp.png D-glyceraldehyde-3-phosphate wpmp.png + Glycerone-phosphate wpmp.png
Biochem reaction arrow reversible NNNN horiz med.png

Compound C05378 at KEGG Pathway Database. Enzyme 4.1.2.13 at KEGG Pathway Database. Compound C00111 at KEGG Pathway Database. Compound C00118 at KEGG Pathway Database.

The numbering of the carbon atoms indicates the fate of the carbons according to their position in fructose 6-phosphate.

Mechanism[edit]

In mammalian aldolase, the key catalytic amino acid residues involved in the reaction are lysine and tyrosine. The tyrosine acts as an efficient hydrogen acceptor while the lysine covalently binds and stabilizes the intermediates. Many bacteria use two magnesium ions in place of the lysine.

The reaction mechanism of aldolase.
The enzyme's reactive site amino acid's side-chains are shown in blue.
Abbreviations: DHAP - dihydroxyacetone phosphate; Fru1,6bP - Fructose-1,6-bisphosphate; GAD - glyceraldehyde 3-phosphate;

Interactive pathway map[edit]

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
|{{{bSize}}}px]]
Glycolysis and Gluconeogenesis edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534". 

Interactions[edit]

Aldolase A has been shown to interact with PLD2.[2]

References[edit]

  1. ^ "Entrez Gene: ALDOA aldolase A, fructose-bisphosphate". 
  2. ^ Kim, Jong Hyun; Lee Sukmook; Kim Jung Hwan; Lee Taehoon G; Hirata Masato; Suh Pann-Ghill; Ryu Sung Ho (Mar 2002). "Phospholipase D2 directly interacts with aldolase via Its PH domain". Biochemistry (United States) 41 (10): 3414–21. doi:10.1021/bi015700a. ISSN 0006-2960. PMID 11876650. 

Further reading[edit]

External links[edit]