Caramel color

From Wikipedia, the free encyclopedia
  (Redirected from Ammonia caramel)
Jump to: navigation, search
Beverages like colas account for 3/4 of the demand for caramel coloring.

Caramel color or caramel coloring is a water soluble food coloring. It is made by heat treatment of carbohydrates, in general in the presence of acids, alkalis, or salts, in a process called caramelization. It is more fully oxidized than caramel candy, and has an odor of burnt sugar and a somewhat bitter taste. Its color ranges from pale yellow to amber to dark brown.

Caramel color is one of the oldest and most widely used food colorings, and is found in many commercially produced foods and beverages, including batters, beer, brown bread, buns, chocolate,[1] cookies, cough drops, spirits and liquor such as brandy, rum, and whisky, chocolate-flavored confectionery and coatings, custards, decorations, fillings and toppings, potato chips,[2] dessert mixes, doughnuts, fish and shellfish spreads, frozen desserts, fruit preserves, glucose tablets, gravy, ice cream, pickles,[3] sauces and dressings, soft drinks (especially colas), sweets, vinegar, and more. Caramel color is widely approved for use in food globally but application and use level restrictions vary by country.[4]

Production[edit]

Caramel is manufactured by heating carbohydrates, either alone or in the presence of acids, alkalies, and/or salts. Caramel is produced from commercially available nutritive sweeteners consisting of fructose, dextrose (glucose), invert sugar, sucrose, malt syrup, molasses, starch hydrolysates and fractions thereof. The acids that may be used are sulfuric, sulfurous, phosphoric, acetic, and citric acids; the alkalies are ammonium, sodium, potassium, and calcium hydroxides; and the salts are ammonium, sodium, and potassium carbonate, bicarbonate, phosphate (including mono- and dibasic), sulfate, and bisulfite. Antifoaming agents, such as polyglycerol esters of fatty acids, may be used as processing aids during manufacture.[5] Its color ranges from pale-yellow to amber to dark-brown.

Caramel color molecules carry either a positive or a negative charge depending upon the reactants used in their manufacture. Problems such as precipitation, flocculation, or migration can be eliminated with the use of a properly charged caramel color for the intended application.

Classification[edit]

Internationally, the United Nations Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA) recognizes four classes of caramel color, differing by the reactants used in their manufacture, each with its own INS and E number, listed in the table below.

Class INS No. E Number Description Restrictions on preparation Used in[6]
I 150a E150a Plain caramel, caustic caramel, spirit caramel No ammonium or sulfite compounds can be used Whiskey and other high proof alcohols
II 150b E150b Caustic sulfite caramel In the presence of sulfite compounds but no ammonium compounds can be used Cognac, sherry and some vinegars
III 150c E150c Ammonia caramel, baker's caramel, confectioner's caramel, beer caramel In the presence of ammonium compounds but no sulfite compounds can be used Beer, sauces, and confectionery
IV 150d E150d Sulfite ammonia caramel, acid-proof caramel, soft-drink caramel In the presence of both sulfite and ammonium compounds Acidic environments such as soft drinks

Color[edit]

Wafer sticks containing caramel color are common in Greece, Indonesia and other countries around the globe.

Color Intensity (Tinctorial Power) is defined as the absorbance of a 1 mg/mL (0.1%) solution (weight/volume) in water, measured using a 1 cm light path at a wavelength of 610 nanometers (or 560 nm for tinctorial power).[5] In this case, A stands for absorbance and TS stands for total solids.

\text{Color Intensity}=\frac{A*100}{TS}

The color tone of the caramel color is also important. This is defined by the Linner Hue Index, which is the measure of the color hue or red characteristics of the caramel color. It is a function of the absorbance of light of wavelengths 510 and 610 nm. In general, the higher the Tinctorial Power, K0.56, the lower the Hue Index and the lower the red tones.[7]

Various other indices are in use around the world and there are conversion factors between them.[8][9]

Additional function[edit]

Caramel color is a colloid. Though the primary function of caramel color is for coloration, it also serves additional functions. In soft drinks, it can function as an emulsifier[10] to help inhibit the formation of certain types of "floc" and its light protective quality can aid in preventing oxidation of the flavoring components in bottled beverages.[11]

Toxicology[edit]

Internationally, JECFA has set the Acceptable Daily Intake (ADI) of Class I caramel color as "not specified"; that of Class II as 0–160 mg/kg body weight; that of Class III as 0–200 mg/kg body weight; and that of Class IV as 0–200 mg/kg body weight.[12]

The United States Food and Drug Administration (FDA) classifies and regulates caramel color in Title 21 CFR § 73.85 as a generally recognized as safe (GRAS) color additive exempt from certification. Unless a food has a standard of identity, caramel color may be safely used in foods generally at levels consistent with "good manufacturing practice" (GMP).

In 2010, the International Programme on Chemical Safety (IPCS) concluded that commercially-produced caramel color has the same toxicological properties as caramel produced by cooking or heating sucrose, except for those prepared using ammonium (Class III and IV). The IPCS has concluded that caramel color does not exhibit carcinogenicity or mutagenicity, based on its studies.[13] While the US FDA,[14] Canadian Health Products and Food Branch[15] and European Food Safety Authority (EFSA)[16] have found caramel color safe for use in food and beverages, California has listed a compound formed in the manufacture of Class III and IV caramel colors in the state's Proposition 65,[17] which requires the Governor to publish, at least annually, a list of chemicals "known to the state to cause cancer or reproductive toxicity."

In June 2012, the Center for Science in the Public Interest (CSPI) published results of its own study on ammoniated caramel coloring in Coca-Cola and the presence of 4-Methylimidazole (4-MEI). In samples from nine countries, levels ranged from 4 to 267 μg of 4-MEI per 12 fluid ounces (355 ml), with the lowest levels in California; State of California regulators estimate that consuming 30 μg per day corresponds to a 1:100,000 risk of developing cancer, and require cancer warning labels for foods leading to that much consumption.[18] According to the Food Chemicals Codex, 4-MeI in caramel color is allowed up to 250 ppm on a color-adjusted basis, which means 250 ppm maximum for every 0.100 color absorbance of a 0.10% solution at 610 nm.[19]

Caramel color has excellent microbiological stability. Since it is manufactured under very high temperature, high acidity, high pressure, and high specific gravity, it is essentially sterile, as it will not support microbial growth unless in a dilute solution.

When reacted with sulfites, caramel color may retain traces of sulfite after processing. However, in finished food products, labeling is usually required only for sulfite levels above 10 ppm.

Review in United States[edit]

In January 2014, a consumer review of various beverages in the United States reported measurements of the amounts of 4-MEI found in them.[20] The study found that Pepsi ONE and Malta Goya contain the chemical in excess of 29 micrograms per can or bottle, with that being California Proposition 65's daily allowed amount for foods without a warning label.[20] Various other media sources reported the story, noting that the FDA says that there is no reason to believe that caramel coloring is unsafe but that they are conducting additional safety studies on 4-MEI found in foods and beverages.[21][22][23]

Pepsi challenged the conclusions of this study because "the average amount of diet soda consumed by those who drink it is approximately 100 [milliliters] per day, or less than a third of a 12 [ounce] can".[20] Because of this, Pepsi argues, consumers of its beverage would not get 29 micrograms of 4-MEI when drinking them.

Food allergies[edit]

Caramel coloring may be derived from a variety of source products that are themselves common allergens, starch hydrolysates (from wheat), malt syrup (in general derived from barley), or lactose (from milk). As such, persons with known sensitivities or allergies to food products are advised to avoid foods including generic caramel coloring or first determine the source for the caramel coloring before consuming the food. North American and European manufacturers mostly use glucose derived from corn or wheat to produce caramel color, which is highly processed and is generally considered gluten free.[24]

References[edit]

  1. ^ "Other Applications: Cocoa/Chocolate". Caramel Color Application Guide. Sethness. Retrieved 25 Nov 2013. 
  2. ^ "Zapp’s Potato Chips Ingredient Lists". Zapps, Inc. Retrieved 25 Nov 2013. 
  3. ^ "Sweet Pickle Chips". M.A. Gedney Co. Retrieved 25 Nov 2013. 
  4. ^ Food & Beverage Processing Regulatory Resources, DD Williamson, retrieved 2012-01-19 
  5. ^ a b FCC 7 Monographs / Caramel / 165, FCC, retrieved 2011-11-07 
  6. ^ "Select the Appropriate Class of Caramel". Select Your Class. DD Williamson. Retrieved 9 Apr 2013. 
  7. ^ Physical and Chemical Properties of Caramel Color, Sethness-Roquette Caramel Color, retrieved 2009-04-26 
  8. ^ EBC’s & Caramel Color, DD Williamson, retrieved 9 Apr 2013 
  9. ^ Grover, D. W. (1968), The measurement and character of caramel colour, Journal of Food Technology (Institute of Food Science and Technology) 3 (4): 311–323, doi:10.1111/j.1365-2621.1968.tb01472.x, retrieved 2009-04-26 
  10. ^ US Caramel is used as an emulsifying agent in preparing an aqueous emulsion of a water insoluble flavoring oil. The emulsion is utilized in preparing flavored beverage syrups and flavored beverages 3622343, Anwar, Mohammad H. & Marvin Calderon, "Emulsions of flavoring oils and process for making same", published 12 Dec 1963, issued 23 Nov 1971 
  11. ^ Kamuf, W et al. (March–April 2003). "Overview of Caramel Colors" (pdf). Cereal Foods World (American Association of Cereal Chemists, Inc) 48 (2): 64–69. Retrieved 9 Aug 2012. 
  12. ^ JECFA (2011), CARAMEL COLOURS, FAO 
  13. ^ CARAMEL COLOURS, IPCS, 2010-09-21, retrieved 2012-01-19 
  14. ^ Yukhananov, Anna (5 Mar 2012). "US regulators dispute finding of cancer-causing soda". Reuters (Washington: Reuters.com). Retrieved 29 Oct 2012. 
  15. ^ Lee, Barbara (15 Nov 2011), Letter from Director of Bureau of Chemical Safety, Health Canada, Health Products and Food Branch 
  16. ^ Scientific Opinion on the re-evaluation of caramel colours (E 150 a,b,c,d) as food additives, European Food Safety Authority (EFSA), retrieved 2012-01-16 
  17. ^ Proposition 65, OEHHA, retrieved 2012-01-16 
  18. ^ Tests Show Carcinogen Levels in Coca-Cola Vary Worldwide, CSPI, 2012-06-26, retrieved 2012-09-27 
  19. ^ "FCC Monographs: Caramel Color", Food Chemicals Codex (8, S1 ed.), The United States Pharmacopeial Convention, 2012, pp. 202–208, ISBN 978-1-936424-06-1 
  20. ^ a b c "Caramel Coloring in Soda - Artificial Food Coloring". consumerreports.org. Consumer Reports. 23 January 2014. Retrieved 24 January 2014. 
  21. ^ Hudson, William, (video presented by Elizabeth Cohen) (23 January 2014). "Consumer Reports: Too many sodas contain potential carcinogen". cnn.com. Retrieved 24 January 2014. 
  22. ^ (video) James, Susan Donaldson (24 Jan 2014). "Consumer Reports Food Coloring Scare: No Need to Give Up Soda Just Yet". abcnews.go.com. Retrieved 27 Jan 2014. 
  23. ^ Pierson, David (23 January 2014). "Pepsi One contains higher levels of potential carcinogen, report says". Los Angeles Times (Los Angeles: Tribune Co). ISSN 0458-3035. Retrieved 24 January 2014. 
  24. ^ Case, Shelley (2008). Gluten-Free Diet: A Comprehensive Resource Guide (Revised-Expanded ed.). Case Nutrition Consulting, Inc. ISBN 978-1-897010-54-9. 
Notes