Animal testing on frogs

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Animal testing
Wistar rat.jpg

Main articles
Animal testing
Alternatives to animal testing
Testing on: invertebrates
frogs · primates
rabbits · rodents
Animal testing regulations
History of animal testing
History of model organisms
IACUC
Laboratory animal sources
Pain and suffering in lab animals
Testing cosmetics on animals
Toxicology testing
Vivisection

Issues
Biomedical research
Animal rights · Animal welfare
Animals (Scientific Procedures)
Great ape research ban
International trade in primates

Cases
Brown Dog affair
Cambridge University primates
Pit of despair
Silver Spring monkeys
UCR 1985 laboratory raid
Unnecessary Fuss

Companies
Jackson Laboratory
Charles River Laboratories, Inc.
Covance · Harlan
Huntingdon Life Sciences
UK lab animal suppliers
Nafovanny · Shamrock

Groups/campaigns
AALAS · AAAS · ALF
Americans for Medical Progress
Boyd Group · BUAV
Dr Hadwen Trust
Foundation for Biomedical
Research
 · FRAME
National Anti-Vivisection Society
New England Anti-Vivisection Society
PETA · Physicians Committee
for Responsible Medicine

Primate Freedom Project
Pro-Test
SPEAK · SHAC
Speaking of Research
Understanding Animal Research

Writers/activists
Tipu Aziz · Michael Balls
Neal Barnard · Colin Blakemore
Simon Festing · Gill Langley
Ingrid Newkirk · Bernard Rollin
Jerry Vlasak · Syed Ziaur Rahman

Categories
Animal testing · Animal rights
Animal welfare

Related templates
Template:Animal rights

Frogs have been used in animal tests throughout the history of biomedical science.

Eighteenth-century biologist Luigi Galvani discovered the link between electricity and the nervous system through studying frogs. The African clawed frog or platanna, Xenopus laevis, was first widely used in laboratories in pregnancy assays in the first half of the 20th century. When human chorionic gonadotropin, a hormone found in substantial quantities in the urine of pregnant women, is injected into a female X. laevis, it induces them to lay eggs. In 1952 Robert William Briggs and Thomas Joseph King cloned a frog by somatic cell nuclear transfer, the same technique that was later used to create Dolly the Sheep, their experiment was the first time successful nuclear transplantation had been accomplished in metazoans.[1]

An unexpected consequence of the use of Xenopus laevis for pregnancy tests was apparently the widespread release of a serious amphibian disease. X. laevis carries a chytrid fungus known as Batrachochytrium dendrobatidis, native to South Africa. X. laevis itself does not show symptoms from carrying this fungus, but the fungus is deadly to many amphibians outside South Africa. Xenopus laevis frogs were exported around the world in large quantities beginning in the 1930s for use in the pregnancy test. Within a few decades, escaped populations of X. laevis were living in many countries of the world, and in the 1970s, many amphibian biologists began noting mysterious declines in frog populations in South America, Central America and Australia, the declines spreading in a pattern that suggested an infectious disease. The disease has since been identified as chytridiomycosis. It has caused several species extinctions and is thought to be a major cause of the worldwide decline in amphibian populations. The chytrid fungus has recently reached North America. In 2004, Weldon et al. identified Xenopus laevis and the pregnancy test as the likely source of this worldwide calamity.[2]

Frogs are used in cloning research and other branches of embryology because frogs are among the closest living relatives of man to lack egg shells characteristic of most other vertebrates, and therefore facilitate observations of early development. Although alternative pregnancy assays have been developed, biologists continue to use Xenopus as a model organism in developmental biology because it is easy to raise in captivity and has a large and easily manipulated embryo. Recently, X. laevis is increasingly being displaced by its smaller relative Xenopus tropicalis, which reaches its reproductive age in five months rather than one to two years (as in X. laevis),[3] facilitating faster studies across generations. The genome sequence of X. tropicalis is scheduled to be completed by 2015 at the latest.[4]

References[edit]

  1. ^ Robert W. Briggs, December 10 1911—March 4, 1983 | By Marie A. Di Berardino | Biographical Memoirs
  2. ^ Weldon, Ché; du Preez, Louis H.; Hyatt, Alex D.; Muller, Reinhold; Speare, Rick (2004). "Origin of the Amphibian Chytrid Fungus". Emerging Infectious Diseases 10 (12): 2100–2105. doi:10.3201/eid1012.030804. PMID 15663845. 
  3. ^ "Developing the potential of Xenopus tropicalis as a genetic model". Archived from the original on 20 February 2006. Retrieved 2006-03-09. 
  4. ^ "Joint Genome Institute - Xenopus tropicalis Home". Archived from the original on 3 March 2006. Retrieved 2006-03-03.