Anoxic event

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Red circles show the location and size of many dead zones.
Black dots show Ocean dead zones of unknown size.
The size and number of marine dead zones—areas where the deep water is so low in dissolved oxygen that sea creatures can't survive—have grown explosively in the past half-century.NASA Earth Observatory[1]
This world perspective on oceanic currents demonstrates the interdependencies of transnational regions on circulating currents.

Oceanic anoxic events or anoxic events (Anoxia conditions) occur when the Earth's oceans become completely depleted of oxygen (O2) below the surface levels. Euxinic (Euxinia) refers to anoxic conditions in the presence of H
2
S
hydrogen sulfide.[2] Although anoxic events have not happened for millions of years, the geological record shows that they happened many times in the past. Anoxic events may have caused mass extinctions.[3] These mass extinctions include some that geobiologists use as time markers in biostratigraphic dating.[4] It is believed oceanic anoxic events are strongly linked to lapses in key oceanic current circulations, to climate warming and greenhouse gases. Enhanced volcanism (through the release of CO2) is the proposed central external trigger for euxinia.[5]

Background[edit]

The concept of the oceanic anoxic event (OAE) was first proposed in 1976 by Seymour Schlanger (1927–1990) and geologist Hugh Jenkyns[6] and arose from discoveries made by the Deep Sea Drilling Project (DSDP) in the Pacific Ocean. It was the finding of black carbon-rich shales in Cretaceous sediments that had accumulated on submarine volcanic plateaus (Shatsky Rise, Manihiki Plateau), coupled with the fact that they were identical in age with similar deposits cored from the Atlantic Ocean and known from outcrops in Europe - particularly in the geological record of the otherwise limestone-dominated Apennines[6] chain in Italy - that led to the realization that these widespread similar strata recorded highly unusual oxygen-depleted conditions in the world ocean during several discrete periods of geological time.

Sedimentological investigations of these organic-rich sediments, which have continued to this day, typically reveal the presence of fine laminations undisturbed by bottom-dwelling fauna, indicating anoxic conditions on the sea floor, believed to be coincident with a low lying poisonous layer of hydrogen sulfide.[7] Furthermore, detailed organic geochemical studies have recently revealed the presence of molecules (so-called biomarkers) that derive from both purple sulfur bacteria[7] and green sulfur bacteria: organisms that required both light and free hydrogen sulfide (H2S), illustrating that anoxic conditions extended high into the illuminated upper water column.

There are currently several places on earth that are exhibiting the features of anoxic events on a localized scale such as algal/bacterial blooms and localized "dead zones". Dead zones exist off the East Coast of the United States in the Chesapeake Bay, in the Scandinavian strait Kattegat, the Black Sea (which may have been anoxic in its deepest levels for millennia, however), in the northern Adriatic as well as a dead zone off the coast of Louisiana. The current surge of jellyfish worldwide is sometimes regarded as the first stirrings of an anoxic event. Other marine dead zones have appeared in coastal waters of South America, China, Japan, and New Zealand. A 2008 study counted 405 dead zones worldwide.[1]

This is a recent understanding. This picture was only pieced together during the last three decades. The handful of known and suspected anoxic events have been tied geologically to large-scale production of the world's oil reserves in worldwide bands of black shale in the geologic record. Likewise the high relative temperatures believed linked to so called "super-greenhouse events"[7]

Euxinia[edit]

Oceanic anoxic events with euxinic (i.e. sulfidic) conditions have been linked to extreme episodes of volcanic outgassing. Thus, volcanism contributed to the buildup of CO2 in the atmosphere, increased global temperatures, causing an accelerated hydrological cycle that introduced nutrients to the oceans to stimulate planktonic productivity. These processes potentially acted as a trigger for euxinia in restricted basins where water-column stratification could develop. Under anoxic to euxinic conditions, oceanic phosphate is not retained in sediment and could hence be released and recycled, aiding continued high productivity. [5]

Mechanism[edit]

External images
nature.com A flow chart of magma sourcing trace metals, ocean fertilization, stratification, and anoxia.

Temperatures throughout the Jurassic and Cretaceous are generally thought to have been relatively warm, and consequently dissolved oxygen levels in the ocean were lower than today - making anoxia easier to achieve. However, more specific conditions are required to explain the short-period (half a million years or less) oceanic anoxic events. Two hypotheses, and variations upon them, have proved most durable.

One hypothesis suggests that the anomalous accumulation of organic matter relates to its enhanced preservation under restricted and poorly oxygenated conditions, which themselves were a function of the particular geometry of the ocean basin: such a hypothesis, although readily applicable to the young and relatively narrow Cretaceous Atlantic (which could be likened to a large-scale Black Sea, only poorly connected to the World Ocean), fails to explain the occurrence of coeval black shales on open-ocean Pacific plateaus and shelf seas around the world. There are suggestions, again from the Atlantic, that a shift in oceanic circulation was responsible, where warm, salty waters at low latitudes became hypersaline and sank to form an intermediate layer, at 500 to 1,000 m (1,640 to 3,281 ft) depth, with a temperature of 20 °C (68 °F) to 25 °C (77 °F).[8]

The second hypothesis suggests that oceanic anoxic events record a major change in the fertility of the oceans that resulted in an increase in organic-walled plankton (including bacteria) at the expense of calcareous plankton such as coccoliths and foraminifera.

Such an accelerated flux of organic matter would have expanded and intensified the oxygen minimum zone, further enhancing the amount of organic carbon entering the sedimentary record. Essentially this mechanism assumes a major increase in the availability of dissolved nutrients such as nitrate, phosphate and possibly iron to the phytoplankton population living in the illuminated layers of the oceans.

For such an increase to occur would have required an accelerated influx of land-derived nutrients coupled with vigorous upwelling, requiring major climate change on a global scale. Geochemical data from oxygen-isotope ratios in carbonate sediments and fossils, and magnesium/calcium ratios in fossils, indicate that all major oceanic anoxic events were associated with thermal maxima, making it likely that global weathering rates, and nutrient flux to the oceans, were increased during these intervals. Indeed, the reduced solubility of oxygen would lead to phosphate release, further nourishing the ocean and fuelling high productivity, hence a high oxygen demand - sustaining the event through a positive feedback.[9]

Here is another way of looking at oceanic anoxic events. Assume that the earth releases a huge volume of carbon dioxide during an interval of intense volcanism; global temperatures rise due to the greenhouse effect; global weathering rates and fluvial nutrient flux increase; organic productivity in the oceans increases; organic-carbon burial in the oceans increases (OAE begins); carbon dioxide is drawn down due to both burial of organic matter and weathering of silicate rocks (inverse greenhouse effect); global temperatures fall, and the ocean–atmosphere system returns to equilibrium (OAE ends).

In this way, an oceanic anoxic event can be viewed as the Earth’s response to the injection of excess carbon dioxide into the atmosphere and hydrosphere. One test of this notion is to look at the age of large igneous provinces (LIPs), the extrusion of which would presumably have been accompanied by rapid effusion of vast quantities of volcanogenic gases such as carbon dioxide. Intriguingly, the age of three LIPs (Karoo-Ferrar flood basalt, Caribbean large igneous province, Ontong Java Plateau) correlates uncannily well with that of the major Jurassic (early Toarcian) and Cretaceous (early Aptian and Cenomanian–Turonian) oceanic anoxic events, indicating that a causal link is feasible.

Occurrence[edit]

Oceanic anoxic events most commonly occurred during periods of very warm climate characterized by high levels of carbon dioxide (CO2) and mean surface temperatures probably in excess of 25 °C (77 °F). The Quaternary levels, our current period, are just 13 °C (55 °F) in comparison. Such rises in carbon dioxide may have been in response to a great outgassing of the highly flammable natural gas (methane) some have christened an "oceanic burp".[10][7] Vast quantities of methane are normally locked into the Earth's crust on the continental plateaus in one of the many deposits consisting of compounds of methane hydrate, a solid precipitated combination of methane and water much like ice. Because the methane hydrates are unstable, save at cool temperatures and high (deep) pressures, scientists have observed smaller "burps" due to tectonic events. Studies suggest the huge release of natural gas[7] could be a major climatological trigger, methane itself being a greenhouse gas many times more powerful than carbon dioxide. However, anoxia was also rife during the Hirnantian (late Ordovician) ice age.

Oceanic anoxic events have been recognized primarily from the already warm Cretaceous and Jurassic Periods, when numerous examples have been documented,[11][12] but earlier examples have been suggested to have occurred in the late Triassic, Permian, Devonian (Kellwasser event), Ordovician and Cambrian.

The Paleocene–Eocene Thermal Maximum (PETM), which was characterized by a global rise in temperature and deposition of organic-rich shales in some shelf seas, shows many similarities to oceanic anoxic events.

Typically, oceanic anoxic events lasted for less than half a million years, before a full recovery.

Consequences[edit]

Oceanic anoxic events have had many important consequences. It is believed that they have been responsible for mass extinctions of marine organisms both in the Paleozoic and Mesozoic.[9] The early Toarcian and Cenomanian-Turonian anoxic events correlate with the Toarcian and Cenomanian-Turonian extinction events of mostly marine life forms. Apart from possible atmospheric effects, many deeper-dwelling marine organisms could not adapt to an ocean where oxygen penetrated only the surface layers.

Another, economically significant consequence of oceanic anoxic events is the fact that the prevailing conditions in so many Mesozoic oceans has helped produce most of the world's petroleum and natural gas reserves. During an oceanic anoxic event, the accumulation and preservation of organic matter was much greater than normal, allowing the generation of potential petroleum source rocks in many environments across the globe. Consequently some 70 percent of oil source rocks are Mesozoic in age, and another 15 percent date from the warm Paleogene: only rarely in colder periods were conditions favorable for the production of source rocks on anything other than a local scale.

Atmospheric effects[edit]

A model put forward by Lee Kump, Alexander Pavlov and Michael Arthur in 2005 suggests that oceanic anoxic events may have been characterized by upwelling of water rich in highly toxic hydrogen sulfide gas, which was then released into the atmosphere. This phenomenon would probably have poisoned plants and animals and caused mass extinctions. Furthermore, it has been proposed that the hydrogen sulfide rose to the upper atmosphere and attacked the ozone layer, which normally blocks the deadly ultraviolet radiation of the Sun. The increased UV radiation caused by this ozone depletion would have amplified the destruction of plant and animal life. Fossil spores from strata recording the Permian-Triassic extinction event show deformities consistent with UV radiation. This evidence, combined with fossil biomarkers of green sulfur bacteria, indicates that this process could have played a role in that mass extinction event, and possibly other extinction events. The trigger for these mass extinctions appears to be a warming of the ocean caused by a rise of carbon dioxide levels to about 1000 parts per million.[13]

Anoxic events in Earth's history[edit]

It is believed that during the Archean euxinia was absent, because of low availability of sulfate on the anoxic Earth.[5]

Cretaceous[edit]

Main article: Cretaceous

Sulfidic (or euxinic) conditions, which exist today in many water bodies from ponds to various land-surrounded mediterranean seas[14] such as the Black Sea, were particularly prevalent in the Cretaceous Atlantic but also characterized other parts of the world ocean. In an ice-free sea of these supposed super-greenhouse worlds, oceanic waters were as much as 200 meters higher, in some eras. During the time spans in question, the continental plates are believed to have been well separated, and the mountains we know today were (mostly) future tectonic events—meaning the overall landscapes were generally much lower— and even the half super-greenhouse climates would have been eras of highly expedited water erosion[7] carrying massive amounts of nutrients into the world oceans fueling an overall explosive population of microorganisms and their predator species in the oxygenated upper layers.

Detailed stratigraphic studies of Cretaceous black shales from many parts of the world have indicated that two oceanic anoxic events (OAEs) were particularly significant in terms of their impact on the chemistry of the oceans, one in the early Aptian (~120 Ma), sometimes called the Selli Event (or OAE 1a) after the Italian geologist, Raimondo Selli (1916–1983), and another at the CenomanianTuronian boundary (~93 Ma), sometimes called the Bonarelli Event (or OAE 2) after the Italian geologist, Guido Bonarelli (1871–1951).

  • Insofar as the Cretaceous OAEs can be represented by type localities, it is the striking outcrops of laminated black shales within the vari-colored claystones and pink and white limestones near the town of Gubbio in the Italian Apennines that are the best candidates.
  • The 1-meter thick black shale at the Cenomanian–Turonian boundary that crops out near Gubbio is termed the ‘Livello Bonarelli’ after the man who first described it in 1891.

More minor oceanic anoxic events have been proposed for other intervals in the Cretaceous (in the Valanginian, Hauterivian, Albian and ConiacianSantonian stages), but their sedimentary record, as represented by organic-rich black shales, appears more parochial, being dominantly represented in the Atlantic and neighboring areas, and some researchers relate them to particular local conditions rather than being forced by global change.

Jurassic[edit]

Main article: Jurassic

The only oceanic anoxic event documented from the Jurassic took place during the early Toarcian (~183 Ma).[11][12] Because no DSDP (Deep Sea Drilling Project) or ODP (Ocean Drilling Program) cores have recovered black shales of this age – there being little or no Toarcian ocean crust remaining in the world ocean – the samples of black shale primarily come from outcrops on land. These outcrops, together with material from some commercial oil wells, are found on all major continents and this event seems similar in kind to the two major Cretaceous examples.

Paleozoic[edit]

Main article: Paleozoic

The boundary between the Ordovician and Silurian periods is marked by repetitive periods of anoxia, interspersed with normal, oxic conditions. In addition, anoxic periods are found during the Silurian. These anoxic periods occurred at a time of low global temperatures (although CO
2
levels were high), in the midst of a glaciation.[15]

Jeppsson (1990) proposes a mechanism whereby the temperature of polar waters determines the site of formation of downwelling water.[16] If the high latitude waters are below 5 °C (41 °F), they will be dense enough to sink; as they are cool, oxygen is highly soluble in their waters, and the deep ocean will be oxygenated. If high latitude waters are warmer than 5 °C (41 °F), their density is too low for them to sink below the cooler deep waters. Therefore thermohaline circulation can only be driven by salt-increased density, which tends to form in warm waters where evaporation is high. This warm water can dissolve less oxygen, and is produced in smaller quantities, producing a sluggish circulation with little deep water oxygen.[16] The effect of this warm water propagates through the ocean, and reduces the amount of CO
2
that the oceans can hold in solution, which makes the oceans release large quantities of CO
2
into the atmosphere in a geologically short time (tens or thousands of years).[17] The warm waters also initiate the release of clathrates, which further increases atmospheric temperature and basin anoxia.[17] Similar positive feedbacks operate during cold-pole episodes, amplifying their cooling effects.

The periods with cold poles are termed "P-episodes" (short for primo[17]), and are characterised by bioturbated deep oceans, a humid equator and higher weathering rates, and terminated by extinction events - for example, the Ireviken and Lau events. The inverse is true for the warmer, oxic "S-episodes" (secundo), where deep ocean sediments are typically graptolitic black shales.[16] A typical cycle of secundo-primo episodes and ensuing event typically lasts around 3 Ma.[17]

The duration of events is so long compared to their onset because the positive feedbacks must be overwhelmed. Carbon content in the ocean-atmosphere system is affected by changes in weathering rates, which in turn is dominantly controlled by rainfall. Because this is inversely related to temperature in Silurian times, carbon is gradually drawn down during warm (high CO
2
) S-episodes, while the reverse is true during P-episodes. On top of this gradual trend is overprinted the signal of Milankovic cycles, which ultimately trigger the switch between P- and S- episodes.[17]

These events become longer during the Devonian; the enlarging land plant biota probably acted as a large buffer to carbon dioxide concentrations.[17]

The end-Ordovician Hirnantian event may alternatively be a result of algal blooms, caused by sudden supply of nutrients through wind-driven upwelling or an influx of nutrient-rich meltwater from melting glaciers, which by virtue of its fresh nature would also slow down oceanic circulation.[18]

See also[edit]

References[edit]

  1. ^ Aquatic Dead Zones NASA Earth Observatory. Revised 17 July 2010. Retrieved 17 January 2010.
  2. ^ Timothy W. Lyons, Ariel D. Anbar, Silke Severmann, Clint Scott, and Benjamin C. Gill (January 19, 2009). "Tracking Euxinia in the Ancient Ocean: A Multiproxy Perspective and Proterozoic Case Study". Annual Review of Earth and Planetary Sciences 37: 507–53. doi:10.1146/annurev.earth.36.031207.124233. Retrieved April 11, 2014. 
  3. ^ Wignall, Paul B.; Richard J. Twitchett (24 May 1996). "Oceanic Anoxia and the End Permian Mass Extinction". Science. 5265 272 (5265): 1155–1158. Bibcode:1996Sci...272.1155W. doi:10.1126/science.272.5265.1155. PMID 8662450. Retrieved 12 September 2011. 
  4. ^ Peters, Walters, Modowan, K.E., C.C., J.M. (2005). The Biomarker Guide, Volume 2: Biomarkers and Isotopes in the Petroleum Exploration and Earth History. Cambridge University Press. p. 749. ISBN 978-0-521-83762-0. 
  5. ^ a b c Katja M Meyer, Lee R Kump (January 9, 2008). "Oceanic euxinia in Earth history: Causes and consequences". Annual Review of Earth and Planetary Sciences 36: 251–288. doi:10.1146/annurev.earth.36.031207.124256. Retrieved April 11, 2014. The central external trigger for euxinia is proposed to be enhanced volcanism (release of volcanic CO2), although other external forcings of the climate system could be imagined (changing solar luminosity, changes in continental configuration affecting ocean circulation and the stability of ice sheets. 
  6. ^ a b History Channel, "The History of Oil" (2007), Australian Broadcasting System, Inc., aired: 2:00-4:00 pm EDST, 2008-07-08; Note: Geologist Hugh Jenkyns was interviewed in the History Channel's (re: footnote:3 History Channel, "The History of Oil" (2007)) documentary "The History of Oil" and attributed the matching occurrence high in the Apennine Mountains' meter thick black shale band put together with the findings from the Deep Sea Drilling Project as triggering the theory and work that followed from a beginning ca 1974.
  7. ^ a b c d e f "What would 3 degrees mean?". Archived from the original on 19 July 2008. Retrieved 2008-07-08. [At plus] Six degrees [i.e rise of 6 degrees Celsius] * At the end of the Permian period, 251 million years ago, up to 95% of species went extinct as a result of a super-greenhouse event, resulting in a temperature rise of six degrees, perhaps because of an even bigger methane belch that happened 200 million years later in the Eocene and also: *Five degrees of warming occurred during the Paleocene-Eocene Thermal Maximum, 55 million years ago: during that event, breadfruit trees grew on the coast of Greenland, while the Arctic Ocean saw water temperatures of 20C within 200km of the North Pole itself. There was no ice at either pole; forests were probably growing in central Antarctica. * The Eocene greenhouse event was probably caused by methane hydrates (an ice-like combination of methane and water) bursting into the atmosphere from the seabed in an immense “ocean burp”, sparking a surge in global temperatures. Today vast amounts of these same methane hydrates still sit on subsea continental shelves. * The early Eocene greenhouse took at least 10,000 years to come about. Today we could accomplish the same feat in less than a century. (emphasis, links added) 
  8. ^ Friedrich, Oliver; Erbacher, Jochen; Moriya, Kazuyoshi; Wilson, Paul A.; Kuhnert, Henning (2008). "Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean". Nature Geoscience 1 (7): 453. Bibcode:2008NatGe...1..453F. doi:10.1038/ngeo217. 
  9. ^ a b Meyer, K. M.; Kump, L. R. (2008). "Oceanic Euxinia in Earth History: Causes and Consequences". Annual Review of Earth and Planetary Sciences 36: 251–288. Bibcode:2008AREPS..36..251M. doi:10.1146/annurev.earth.36.031207.124256.  edit
  10. ^ Mark Lynas, Oneworld.net (May 1, 2007). "Six Steps to Hell: The Facts on Global Warming". Retrieved 2008-07-08. With extreme weather continuing to bite -- hurricanes may increase in power by half a category above today’s top-level Category Five -- world food supplies will be critically endangered. :And: The Eocene greenhouse event fascinates scientists not just because of its effects, which also saw a major mass-extinction in the seas, but also because of its likely cause: methane hydrates. This unlikely substance, a sort of ice-like combination of methane and water that is only stable at low temperatures and high pressure, may have burst into the atmosphere from the seabed in an immense “ocean burp”, sparking a surge in global temperatures (methane is even more powerful as a greenhouse gas than carbon dioxide). Today vast amounts of these same methane hydrates still sit on sub-sea continental shelves. As the oceans warm, they could be released once more in a terrifying echo of that methane belch of 55 million years ago. 
  11. ^ a b Gronstal, A. L. (2008-04-24). "Gasping for Breath in the Jurassic Era". http://www.space.com. Imaginova. Archived from the original on 29 April 2008. Retrieved 2008-04-24. 
  12. ^ a b Pearce, C. R.; Cohen, A. S.; Coe, A. L.; Burton, K. W. (March 2008). "Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic". Geology (Geological Society of America) 36 (3): 231–234. doi:10.1130/G24446A.1. Archived from the original on 29 April 2008. Retrieved 2008-04-24. 
  13. ^ Ward, Peter D. "Impact from the Deep". Scientific American 2006 (October): 64–71. 
  14. ^ definition of mediterranean sea; "6. surrounded or nearly surrounded by land."
  15. ^ Page, A., Zalasiewicz, J. & Williams, M (2007). "Deglacial anoxia in a long-lived Early Palaeozoic Icehouse.". In Budd, G.E.; Streng, M.; Daley, A.C.; Willman, S. Programme with Abstracts. Palaeontological Association Annual Meeting 51. Uppsala, Sweden. p. 85. 
  16. ^ a b c Jeppsson, L. (1990). "An oceanic model for lithological and faunal changes tested on the Silurian record". Journal of the Geological Society 147 (4): 663–674. doi:10.1144/gsjgs.147.4.0663. 
  17. ^ a b c d e f Jeppsson, L (1997). "The anatomy of the Mid-Early Silurian Ireviken Event and a scenario for P-S events". In Brett, C.E., Baird, G.C. Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. New York: Columbia University Press. pp. 451–492. ISBN 0-231-08250-9. 
  18. ^ Lüning, S.; Loydell, D.K.; Štorch, P.; Shahin, Y.; Craig, J. (2006). "Origin, sequence stratigraphy and depositional environment of an Upper Ordovician (Hirnantian) deglacial black shale, Jordan—Discussion". Palaeogeography, Palaeoclimatology, Palaeoecology 230 (3–4): 352–355. doi:10.1016/j.palaeo.2005.10.004. 

Further reading[edit]

  • Kashiyama, Yuichiro; Nanako O. Ogawa; Junichiro Kuroda; Motoo Shiro; Shinya Nomoto; Ryuji Tada; Hiroshi Kitazato; Naohiko Ohkouchi (May 2008). "Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic anoxic events: Nitrogen and carbon isotopic evidence from sedimentary porphyrin". Organic Geochemistry 39 (5): 532–549. doi:10.1016/j.orggeochem.2007.11.010. 
  • Kump, L.R., Pavlov, A., and Arthur, M.A. (2005). "Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia". Geology 33 (5): 397–400. Bibcode:2005Geo....33..397K. doi:10.1130/G21295.1. 
  • Hallam, A. (2004). Catastrophes and lesser calamities: the causes of mass extinctions. Oxford [Oxfordshire]: Oxford University Press. pp. 91–607. ISBN 0-19-852497-8. 
  • Demaison G.J. and Moore G.T., (1980),"Anoxic environments and oil source bed genesis".American Association of Petroleum Geologists (AAPG) Bulletin. Vol.54,No8.

External links[edit]