Aspergillus oryzae

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Aspergillus oryzae
Aspergillus oryzae (麹).jpg
A. oryzae growing on rice to make koji
Scientific classification
Domain: Eukarya
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Trichocomaceae
Genus: Aspergillus
Species: A. oryzae
Binomial name
Aspergillus oryzae
(Ahlburg) E. Cohn[1]

Aspergillus oryzae (Chinese: 麴菌, 麴霉菌, 曲霉菌, pinyin: qū meí jūn; Japanese: 麹, kōji, or 麹菌, kōji-kin, Korean: 누룩균, nurukgyun or 누룩곰팡이 nuruk-gompang-i) is a filamentous fungus (a mold). It is used in Chinese, Korean, and Japanese cuisine to ferment soybeans. It is also used to saccharify rice, other grains, and potatoes in the making of alcoholic beverages such as huangjiu, sake, makgeolli and shōchū. The domestication of A. oryzae occurred at least 2000 years ago.[2] A. oryzae is used for the production of rice vinegars.

Dr. Eiji Ichishima of Tohoku University called the kōji fungus a "national fungus" (kokkin) in the journal of the Brewing Society of Japan, because of its importance not only for making the koji for sake brewing, but also for making the koji for miso, soy sauce and a range of other traditional Japanese foods. His proposal was approved at the society's annual meeting in 2006.[3]

"Red kōji-kin" is a separate species, Monascus purpureus.

History of koji[edit]

300 BCEA. oryzae (qu, pronounced "chew") is first mentioned in the Zhouli (Rites of the Zhou dynasty) in China. Its development is a milestone in Chinese food technology, for it provides the conceptual framework for three major fermented soy foods: soy sauce, jiang / miso, and fermented black soybeans, not to mention grain-based wines (including Japanese sake) and li (the Chinese forerunner of Japanese amazake).[4]

Properties desirable in sake brewing and testing[edit]

The following properties of A. oryzae strains are important in rice saccharification for sake brewing:[5]

Varieties used for shōchū making[edit]

There are three varieties of kōji mold used for making shōchū, each with distinct characteristics.[6][7][8]

  • White. Discovered at the beginning of the Taishō period when natural mutation and separation of some black kōji to white was observed. This effect was researched and white kōji was successfully grown independently. White kōji is easy to cultivate and its enzymes promote rapid saccharization; as a result it is used to produce most shōchū today. It gives rise to a drink with a refreshing, gentle, sweet taste.
  • Black. Mainly used in Okinawa to produce Awamori. It produces plenty of citric acid which helps to prevent the souring of the moromi. Of all three kōji it most effectively extracts the taste and character of the base ingredients, giving its shōchū a rich aroma with a slightly sweet, mellow taste. Its spores disperse easily, covering production facilities and workers' clothes in a layer of black. Such issues led to it falling out of favour, but due to the development of New Kuro-kōji (NK-kōji) in the mid-1980s,[9] interest in black kōji resurged amongst honkaku shōchū makers because of the depth and quality of the taste it produced. Several popular brands now explicitly state they use black kōji on their labels.
  • Yellow. Used to produce sake, and at one time all honkaku shōchū. However yellow kōji is extremely sensitive to temperature; its moromi can easily sour during fermentation. This makes it difficult to use in warmer regions such as Kyūshū, and gradually black and white kōji became more common. Its strength is that it gives rise to a rich, fruity refreshing taste, so despite the difficulties and great skill required it is still used by some manufacturers. It is popular amongst young people and women who previously had no interest in typically strong potato shōchū, playing a rôle in its recent revival.

Genome[edit]

Initially kept secret, the A. oryzae genome was released by a consortium of Japanese biotechnology companies[10] in late 2005.[11] The eight chromosomes together comprise 37 million base pairs and 12 thousand predicted genes. The genome of A. oryzae is thus one-third larger than that of two related Aspergillus species, the genetics model organism A. nidulans and the potentially dangerous A. fumigatus.[12] Many of the extra genes present in A. oryzae are predicted to be involved in secondary metabolism. The sequenced strain isolated in 1950 is called RIB40 or ATCC 42149; its morphology, growth, and enzyme production are typical of strains used for sake brewing.[2]

Use in biotechnology[edit]

Resveratrol can be produced from its glucoside piceid through the process of fermentation by A. oryzae.[13]

In fiction[edit]

A. oryzae is a supporting character (of sorts) in the manga series Moyasimon: Tales of Agriculture and its anime adaptation.

See also[edit]

References[edit]

  1. ^ Index Fungorum
  2. ^ a b Rokas, A. (2009). "The effect of domestication on the fungal proteome". Trends in genetics : TIG 25 (2): 60–63. doi:10.1016/j.tig.2008.11.003. PMID 19081651.  edit
  3. ^ http://www.tokyofoundation.org/en/series/japanese-traditional-foods/vol.-10-koji-an-aspergillus
  4. ^ Shurtleff, W.; Aoyagi, A. History of Koji - Grains and/or Soybeans Enrobed with a Mold Culture (300 BCE to 2012). Lafayette, California: Soyinfo Center. 660 pp. (1,560 references; 142 photos and illustrations, Free online)
  5. ^ Kitamoto, Katsuhiko (2002). "Molecular Biology of the Koji Molds". Advances in Applied Microbiology. Advances in Applied Microbiology 51: 129–153. doi:10.1016/S0065-2164(02)51004-2. ISBN 9780120026531. PMID 12236056. Retrieved 2008-01-03. 
  6. ^ "In-depth". Retrieved 2007-01-24.  (Japanese)
  7. ^ "What is Shochu?". Retrieved 2007-01-24. 
  8. ^ "Other terminology relating to Shochu and Awamori". Retrieved 2007-01-27.  (Japanese)
  9. ^ "Shochu Circle". Retrieved 2007-12-11. 
  10. ^ Goffeau, André (December 2005). "Multiple moulds". Nature 438 (7071): 1092–1093. doi:10.1038/4381092b. PMID 16371993. 
  11. ^ Machida, Masayuki et al. (December 2005). "Genome sequencing and analysis of Aspergillus oryzae". Nature 438 (7071): 1157–1161. doi:10.1038/nature04300. PMID 16372010. 
  12. ^ Galagan, James E. et al. (December 2005). "Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae". Nature 438 (7071): 1105–1115. doi:10.1038/nature04341. PMID 16372000. 
  13. ^ Wang, H.; Liu, L.; Guo, Y. -X.; Dong, Y. -S.; Zhang, D. -J.; Xiu, Z. -L. (2007). "Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae". Applied Microbiology and Biotechnology 75 (4): 763–768. doi:10.1007/s00253-007-0874-3. PMID 17333175.  edit

External links[edit]