Attention versus memory in prefrontal cortex

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Lebedev et al. experiment that dissociated representation of spatial attention from representation of spatial memory in prefrontal cortex.[1]

A widely accepted theory regarding the function of the brain's prefrontal cortex is that it serves as a store of short-term memory. This idea was first formulated by Jacobsen, who reported in 1936 that damage to the primate prefrontal cortex caused short-term memory deficits.[2] Karl Pribram and colleagues (1952) identified the part of the prefrontal cortex responsible for this deficit as area 46, also known as the dorsolateral prefrontal cortex (dlPFC).[3] More recently, Goldman-Rakic and colleagues (1993) evoked short-term memory loss in localized regions of space by temporary inactivation of portions of the dlPFC.[4] Once the concept of working memory (see also Baddeley's model of working memory) was established in contemporary neuroscience by Baddeley (1986), these neuropsychological findings contributed to the theory that the prefrontal cortex implements working memory and, in some extreme formulations, only working memory.[5] In the 1990s this theory developed a wide following, and it became the predominant theory of PF function, especially for nonhuman primates. The concept of working memory used by proponents of this theory focused mostly on the short-term maintenance of information, and rather less on the manipulation or monitoring of such information or on the use of that information for decisions. Consistent with the idea that the prefrontal cortex functions predominantly in maintenance memory, delay-period activity in the PF has often been interpreted as a memory trace. (The phrase "delay-period activity" applies to neuronal activity that follows the transient presentation of an instruction cue and persists until a subsequent "go" or "trigger" signal.)

To explore alternative interpretations of delay-period activity in the prefrontal cortex, Lebedev et al. (2004) investigated the discharge rates of single prefrontal neurons as monkeys attended to a stimulus marking one location while remembering a different, unmarked location.[1] Both locations served as potential targets of a saccadic eye movement. Although the task made intensive demands on short-term memory, the largest proportion of prefrontal neurons represented attended locations, not remembered ones. These findings showed that short-term memory functions cannot account for all, or even most, delay-period activity in the part of the prefrontal cortex explored. The authors suggested that prefrontal activity during the delay-period contributes more to the process of attentional selection (and selective attention) than to memory storage.


  1. ^ a b Lebedev, M. A.; Messinger, A.; Kralik, J. D.; Wise, S. P. (2004). "Representation of Attended Versus Remembered Locations in Prefrontal Cortex". PLoS Biology 2 (11): e365. doi:10.1371/journal.pbio.0020365. PMC 524249. PMID 15510225.  edit
  2. ^ Jacobsen C.F. (1936) Studies of cerebral function in primates. I. The functions of the frontal associations areas in monkeys. Comp Psychol Monogr 13: 3–60.
  3. ^ Pribram, K. H.; Mishkin, M.; Rosvold, H. E.; Kaplan, S. J. (1952). "Effects on delayed-response performance of lesions of dorsolateral and ventromedial frontal cortex of baboons". Journal of comparative and physiological psychology 45 (6): 565–575. doi:10.1037/h0061240. PMID 13000029.  edit
  4. ^ Funahashi, S.; Bruce, C. J.; Goldman-Rakic, P. S. (1993). "Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic "scotomas"". The Journal of neuroscience : the official journal of the Society for Neuroscience 13 (4): 1479–1497. PMID 8463830.  edit
  5. ^ Baddeley A. (1986) Working memory. Oxford: Oxford University Press. p.289

Further reading[edit]