From Wikipedia, the free encyclopedia
Jump to: navigation, search
B-cell translocation gene 1, anti-proliferative
Symbol BTG1
External IDs OMIM109580 MGI88215 HomoloGene37521 GeneCards: BTG1 Gene
RNA expression pattern
PBB GE BTG1 200921 s at tn.png
PBB GE BTG1 200920 s at tn.png
More reference expression data
Species Human Mouse
Entrez 694 12226
Ensembl ENSG00000133639 ENSMUSG00000036478
UniProt P62324 P62325
RefSeq (mRNA) NM_001731 NM_007569
RefSeq (protein) NP_001722 NP_031595
Location (UCSC) Chr 12:
92.54 – 92.54 Mb
Chr 10:
96.62 – 96.62 Mb
PubMed search [1] [2]

Protein BTG1 is a protein that in humans is encoded by the BTG1 gene.[1][2]


The BTG1 gene locus has been shown to be involved in a t(8;12)(q24;q22) chromosomal translocation in a case of B-cell chronic lymphocytic leukemia. It is a member of a family of antiproliferative genes. BTG1 expression is maximal in the G0/G1 phases of the cell cycle and downregulated when cells progressed through G1. It negatively regulates cell proliferation.[2]


BTG1 has been shown to interact with:

Clinical relevance[edit]

Recurrent mutations in this gene have been associated to cases of diffuse large B-cell lymphoma.[9][10]

Maintenance of adult neural stem cells[edit]

Recent data, obtained in a new model of mouse lacking the BTG1 gene, indicate that BTG1 is essential for the proliferation and expansion of stem cells in the adult neurogenic niches, i.e. the dentate gyrus and subventricular zone. In particular, BTG1 keeps adult neural stem cells in quiescence, preserving the neural stem cells pool from depletion; in fact, in absence of BTG1, the stem and progenitor cells initially hyper proliferate and then in the longer period loose the ability to proliferate and expand (;[11] see for review:[12]). Other recent data indicate that physical exercise can fully reconstitute the proliferative defect of stem cells that follows the ablation of the BTG1 gene, suggesting that the pool of neural stem cells maintains a hidden form of plasticity which is tightly controlled by BTG1; hence, BTG1 might prevent the depletion of stem cells in the presence of strong neurogenic stimuli or of neural degenerative stimuli.[13]

The closest homolog of BTG1 is BTG2, which also controls the proliferation and differentiation of adult neural stem cells; the role of BTG2, however, appears to differ from that of BTG1 being probably more relevant in controlling the terminal differentiation of neural stem and progenitor cells in the adult neurogenic niches.[12]


  1. ^ Iwai K, Hirata K, Ishida T, Takeuchi S, Hirase T, Rikitake Y et al. (March 2004). "An anti-proliferative gene BTG1 regulates angiogenesis in vitro". Biochem Biophys Res Commun 316 (3): 628–35. doi:10.1016/j.bbrc.2004.02.095. PMID 15033446. 
  2. ^ a b "Entrez Gene: BTG1 B-cell translocation gene 1, anti-proliferative". 
  3. ^ Bogdan JA, Adams-Burton C, Pedicord DL, Sukovich DA, Benfield PA, Corjay MH et al. (December 1998). "Human carbon catabolite repressor protein (CCR4)-associative factor 1: cloning, expression and characterization of its interaction with the B-cell translocation protein BTG1". Biochem. J. 336 336 (2): 471–81. PMC 1219893. PMID 9820826. 
  4. ^ a b Prévôt D, Morel AP, Voeltzel T, Rostan MC, Rimokh R, Magaud JP et al. (March 2001). "Relationships of the antiproliferative proteins BTG1 and BTG2 with CAF1, the human homolog of a component of the yeast CCR4 transcriptional complex: involvement in estrogen receptor alpha signaling pathway". J. Biol. Chem. 276 (13): 9640–8. doi:10.1074/jbc.M008201200. PMID 11136725. 
  5. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N et al. (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514. 
  6. ^ Prévôt D, Voeltzel T, Birot AM, Morel AP, Rostan MC, Magaud JP et al. (January 2000). "The leukemia-associated protein Btg1 and the p53-regulated protein Btg2 interact with the homeoprotein Hoxb9 and enhance its transcriptional activation". J. Biol. Chem. 275 (1): 147–53. doi:10.1074/jbc.275.1.147. PMID 10617598. 
  7. ^ Lin WJ, Gary JD, Yang MC, Clarke S, Herschman HR (June 1996). "The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase". J. Biol. Chem. 271 (25): 15034–44. doi:10.1074/jbc.271.25.15034. PMID 8663146. 
  8. ^ Berthet C, Guéhenneux F, Revol V, Samarut C, Lukaszewicz A, Dehay C et al. (January 2002). "Interaction of PRMT1 with BTG/TOB proteins in cell signalling: molecular analysis and functional aspects". Genes Cells 7 (1): 29–39. doi:10.1046/j.1356-9597.2001.00497.x. PMID 11856371. 
  9. ^ Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. (August 2011). "Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma". Nature 476 (7360): 298–303. doi:10.1038/nature10351. PMC 3210554. PMID 21796119. 
  10. ^ Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C et al. (March 2012). "Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing". Proc. Natl. Acad. Sci. U.S.A. 109 (10): 3879–84. doi:10.1073/pnas.1121343109. PMC 3309757. PMID 22343534. 
  11. ^ Farioli-Vecchioli S, Micheli L, Saraulli D, Ceccarelli M, Cannas S, Scardigli R et al. (2012). "Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone". Front Neurosci 6: 124. doi:10.3389/fnins.2012.00124. PMC 3431174. PMID 22969701. 
  12. ^ a b Tirone F, Farioli-Vecchioli S, Micheli L, Ceccarelli M, Leonardi L (2013). "Genetic control of adult neurogenesis: interplay of differentiation, proliferation and survival modulates new neurons function, and memory circuits". Front Cell Neurosci 7: 59. doi:10.3389/fncel.2013.00059. PMC 3653098. PMID 23734097. 
  13. ^ Farioli-Vecchioli S, Mattera A, Micheli L, Ceccarelli M, Leonardi L, Saraulli D et al. (2014). "Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells". Stem cells. doi:10.1002/stem.1679. 

Further reading[edit]