Bacteroides

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Bacteroides
Bacteroides spp. anaerobically cultured in blood agar medium
Scientific classification
Kingdom: Bacteria
Phylum: Bacteroidetes
Class: Bacteroidetes
Order: Bacteroidales
Family: Bacteroidaceae
Genus: Bacteroides
Castellani & Chalmers 1919
Species

Bacteroides is a genus of Gram-negative, obligately anaerobic bacteria. Bacteroides species are non-endospore-forming bacilli, and may be either motile or non-motile, depending on the species.[1] The DNA base composition is 40-48% GC. Unusual in bacterial organisms, Bacteroides membranes contain sphingolipids. They also contain meso-diaminopimelic acid in their peptidoglycan layer.

Bacteroides are normally mutualistic, making up the most substantial portion of the mammalian gastrointestinal flora,[2] where they play a fundamental role in processing of complex molecules to simpler ones in the host intestine.[3][4][5] As many as 1010-1011 cells per gram of human feces have been reported.[6] They can use simple sugars when available; however, the main sources of energy for Bacteroides species in the gut are complex host-derived and plant glycans.[7] Studies indicate that long-term diet is strongly associated with the gut microbiome composition - those who eat plenty of protein and animal fats have predominantly Bacteroides bacteria, while for those who consume more carbohydrates the Prevotella species dominate.[8]

One of the most important clinically is Bacteroides fragilis.

Bacteroides melaninogenicus has recently been reclassified and split into Prevotella melaninogenica and Prevotella intermedia.[9]

Pathogenesis[edit]

Bacteroides species also benefit their host by excluding potential pathogens from colonizing the gut. Some species (B. fragilis, for example) are opportunistic human pathogens, causing infections of the peritoneal cavity, gastrointestinal surgery, and appendicitis via abscess formation, inhibiting phagocytosis, and inactivating beta-lactam antibiotics.[10] Although Bacteroides species are anaerobic, they are transiently aerotolerant[11] and thus can survive in the abdominal cavity.

In general, Bacteroides are resistant to a wide variety of antibiotics — β-lactams, aminoglycosides, and recently many species have acquired resistance to erythromycin and tetracycline. This high level of antibiotic resistance has prompted concerns that Bacteroides species may become a reservoir for resistance in other, more highly pathogenic bacterial strains.[12][13]

Microbiological applications[edit]

An alternative fecal indicator organism, Bacteroides, has been suggested because they make up a significant portion of the fecal bacterial population,[1] have a high degree of host specificity that reflects differences in the digestive system of the host animal,[14] and have a small potential to grow in the environment.[15] Over the past decade, real-time polymerase chain reaction (PCR) methods have been used to detect the presence of various microbial pathogens through the amplification of specific DNA sequences without culturing bacteria. One study has measured the amount of Bacteroides by using qPCR to quantify the host-specific 16S rRNA genetic marker.[16] This technique allows quantification of genetic markers that are specific to the host of the bacteria and allow detection of recent contamination. A recent report found temperature plays a major role in the amount of time the bacteria will persist in the environment, the life span increases with colder temperatures (0-4°C).[17]

Human[edit]

There is data that suggests members of Bacteroides impacts on lean or obese phenotype in humans.[18] In this article, one human twin is obese while the other is lean. Their fecal microbiota is transplanted into germ-free mouse and, interestingly, the phenotype in mouse-model corresponds to that in human.

See also[edit]

References[edit]

  1. ^ a b Madigan M, Martinko J, ed. (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-131-44329-1. 
  2. ^ Dorland WAN (editor) (2003). Dorland's Illustrated Medical Dictionary (30th ed.). W.B. Saunders. ISBN 0-721-60146-4. 
  3. ^ Wexler, H. M. (Oct 2007). "Bacteroides: the good, the bad, and the nitty-gritty" (Free full text). Clinical Microbiology Reviews 20 (4): 593–621. doi:10.1128/CMR.00008-07. ISSN 0893-8512. PMC 2176045. PMID 17934076.  edit
  4. ^ Xu, J. .; Gordon, I. . (Sep 2003). "Inaugural Article: Honor thy symbionts" (Free full text). Proceedings of the National Academy of Sciences of the United States of America 100 (18): 10452–10459. Bibcode:2003PNAS..10010452X. doi:10.1073/pnas.1734063100. ISSN 0027-8424. PMC 193582. PMID 12923294.  edit
  5. ^ Xu, J.; Mahowald, A.; Ley, E.; Lozupone, A.; Hamady, M.; Martens, C.; Henrissat, B.; Coutinho, M.; Minx, P.; Latreille, P.; Cordum, H.; Van Brunt, A.; Kim, K.; Fulton, R. S.; Fulton, L. A.; Clifton, S. W.; Wilson, R. K.; Knight, R. D.; Gordon, J. I. (Jul 2007). "Evolution of symbiotic bacteria in the distal human intestine" (Free full text). PLoS Biology 5 (7): e156. doi:10.1371/journal.pbio.0050156. ISSN 1544-9173. PMC 1892571. PMID 17579514.  edit
  6. ^ Finegold SM, Sutter VL, Mathisen GE (1983). Normal indigenous intestinal flora (pp. 3-31) in Human intestinal microflora in health and disease. Academic Press. ISBN 0-123-41280-3. 
  7. ^ Martens EC, Chiang HC, Gordon JI (2008). "Mucosal Glycan Foraging Enhances Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont". Cell Host Microbe 13 (4): 447–57. doi:10.1016/j.chom.2008.09.007. PMC 2605320. PMID 18996345. 
  8. ^ Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (October 7, 2011). "Linking long-term dietary patterns with gut microbial enterotypes". Science 334 (6052): 105–8. Bibcode:2011Sci...334..105W. doi:10.1126/science.1208344. PMC 3368382. PMID 21885731. 
  9. ^ "Bacteroides Infection: Overview - eMedicine". Archived from the original on 22 December 2008. Retrieved 2008-12-11. 
  10. ^ Ryan KJ, Ray CG, ed. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 0-838-58529-9. 
  11. ^ Baughn, Anthony; Malamy, Michael (2004). "Molecular Basis for Aerotolerance of the Obligately Anaerobic Bacteroides Spp.". In Nakano, Michiko; Zuber, Peter. Strict and Facultative Anaerobes: Medical and Environmental Aspects. CRC Press. p. 161. ISBN 1-904933-03-3. 
  12. ^ Salyers AA, Gupta A, Wang Y (2004). "Human intestinal bacteria as reservoirs for antibiotic resistance genes". Trends Microbiol 12 (9): 412–416. doi:10.1016/j.tim.2004.07.004. PMID 15337162. 
  13. ^ Löfmark, S.; Jernberg, C.; Jansson, K.; Edlund, C. (Dec 2006). "Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. And resistance genes" (Free full text). The Journal of antimicrobial chemotherapy 58 (6): 1160–1167. doi:10.1093/jac/dkl420. ISSN 0305-7453. PMID 17046967.  edit
  14. ^ Bernhard AE, Field KG. A PCR assay To discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA (Oct 2000). "A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA". Applied and Environmental Microbiology 66 (10): 4571–4574. doi:10.1128/AEM.66.10.4571-4574.2000. PMC 92346. PMID 11010920. 
  15. ^ Kreader, CA (Oct 1998). "Persistence of PCR-detectable Bacteroides distasonis from human feces in river water". Applied and Environmental Microbiology 64 (10): 4103–4105. PMC 106613. PMID 9758854. 
  16. ^ Layton, A.; McKay, L; Williams, D; Garrett, V; Gentry, R; Sayler, G (2006). "Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for Estimation of Total, Human,and Bovine Fecal Pollution in Water". Applied and Environmental Microbiology 72 (6): 4214–4224. doi:10.1128/AEM.01036-05. PMC 1489674. PMID 16751534. 
  17. ^ Bell A, Layton AC, McKay L, Williams D, Gentry R, Sayler GS (27 Apr 2009). "Factors influencing the persistence of fecal Bacteroides in stream water". J Environ Qual. 38 (3): 1224–1232. doi:10.2134/jeq2008.0258. PMID 19398520. 
  18. ^ http://www.sciencemag.org/content/341/6150/1241214.abstract

External links[edit]