Bernard Marshall Gordon

From Wikipedia, the free encyclopedia
Jump to: navigation, search
For similarly named people, see Bernard Gordon (disambiguation)

Bernard Marshall Gordon (born in 1927), American inventor and philanthropist, is generally called "Bernie" rather than "Mr. Gordon" by associates and subordinates.[1] Born not long before the stock market crash of 1929 to an ordinary working family in Springfield, Massachusetts, Bernie worked part-time in a radio shop to help support the family.

Later he headed an electronics empire built by himself and hand-picked associates and was known as "the father of high-speed solid-state analog-to-digital conversion." His name is on over 200 patents, many of which are shared with associates at Analogic Inc., the main company founded by Bernie. It is safe to say that he typifies and values what some have called the yankee spirit of innovation. At Analogic he surrounded himself with inventors, specifically rewarding creativity more than any other trait. Regarding his innovativeness, he said:

"I enjoy what I do."

Still later in life, Bernie gave all his company shares to the Bernard M. Gordon Charitable Remainder UniTrust, which sells the shares and gives away the money. When it runs dry it will have disbursed about 300 million, mainly to institutions. Concerning this action, Bernie said:

"I established the trust because as I got old, I wanted to live long enough to see some of this money given away to good causes."

Personal background[edit]

Bernie was born Bernard Marshall Gordon. The Gordons were a Jewish family. Bernie's father gave sermons in churches, schools and synagogues. He always encouraged his son to get A's in school. Bernie was a Boy Scout, an Eagle Scout and has received the Distinguished Eagle Scout Award.

Early in life Bernie learned two principles that were invaluable to him in building a subsequent career. First is that inventiveness is an interesting, useful and profitable trait. At age 13 he invented and sold a pull-cord device to drop lime into the outhouses that then abounded in rural Massachusetts. The second principle is the necessity for self-defense. Diminutive and Jewish, he was beaten so often on the way home from school that he took up boxing and acquired some skill from the teaching of his uncle, Chick Rosnick, an army physical education instructor.

Bernie attended Springfield Technical High School rather than a classical high school; however, of his sojourn there Bernie said:

"It was not a classical high school, it was a technical high school attended by kids who might want to be carpenters or plumbers. Yet I would make this comment: I was better educated in high school in 1943 than most college graduates are today. I could read and write and quote Shakespeare, I had classes in philosophy, logic and psychology, and I was taking apart airplanes and automobiles. This education was a very important influence on how I think about the teaching of engineering."

In this way Bernie was imbued with the pragmatist spirit. Comparisons to Edison, Bell and Rickover are not inapropos.

Bernie did extremely well in high school. He studied English literature and French as well as calculus, physics and electronics. He also competed on the track and wrestling teams, and was class co-president with the son of Paul Robeson, Paul Robeson II, who had been sent to Springfield to be educated, as there was only one black family in Enfield, Connecticut, where his mother then resided. Bernie graduated from high school at 16.

The successful and well-motivated young man immediately applied to MIT for admission. He was turned down on a snap judgment:

"The professor who interviewed me asked what I did after school. I told him I made outhouses and fixed radios. He actually told me: 'I don't think you're the type we want at MIT.' "

Bernie looked around for other programs and soon found one to his liking.

Military service[edit]

The program found by the 17-year-old Bernie in 1944 amounted to a free year of college and a commission in the United States Navy. Started only a few years previously it was officially termed the V-12 Navy College Training Program. Bernie entered the navy under this program at 17, along with a good many other future notables in American government and society, as a Seaman Apprentice, the lowest rank in the navy, but also one that was being used for a training rate.

The program gave Bernie his first year in college, which he took first at MIT, then at Tufts, bunking in on the third floor of West Hall, four to a room. The boys wore uniform on campus. Bernie's room was near the fire escape, where he watched the other boys sneaking out for dates. This was an era of wistfulness for the young man, who later described himself as "pure" at that time. He did not escape down the fire escape, but remained hard at work, a habit he retained all his life.

He was subsequently commissioned and remained an officer in the Ready Reserve for 15 years.

Education[edit]

Bernie had very clear ideas on what he wanted to do. His radio hobby and part-time work had interested him in electronics. He applied for entry into MIT in electrical engineering again under the GI Bill and this time was accepted.

Bernie already had a year of college in the navy. He completed work for the BS degree in 1948 and still had some time left on his GI Bill, so he went on for the MS, which he had earned by 1949. That degree and an honorable service record made him at age 22 one of the more desirable candidates for an engineering position. He had no trouble getting a job. His major concern was getting the right one.

Professional life[edit]

Employee[edit]

Bernie's first job after college was with Philco Corporation. He was there for a year, a long time in the fast-paced world of growing electronics innovation that followed the war. His career there was interrupted by a personal call from the young Presper Eckert, 28 at the time, who had heard about him from an MIT professor and wanted to interview him.

As a result, Bernie went to work at the Eckert-Mauchly Computer Corporation in an old building in Philadelphia. He had joined a group of young and irreverent engineers who were building the first commercial digital computer. At that time the digital computer was a new idea coming out of war-time military intelligence efforts. The first one had been devised to compute artillery firing tables, but was completed too late (1946) to impact the course of the war. Now Bernie found that he was to work on the development of UNIVAC, the world's first commercial digital computer. His co-workers were all in their 20's; however, the same might be said of many other entrepreneurs and project enthusiasts in the just-foming field of computers.

At this time, Bernie got his first indoctrination in entrpreneurial management from the receiving end. He said:

"The chief engineer was Jim Weiner who had come down from Raytheon. Jim ruled over us like a master sergeant and engendered in us reactionary passions . . . but he made us do our jobs."

Weiner in turn mirrored Eckert, of whom Bernie said:

"If in my later years I have myself developed a reputation for being a tough engineering task master, I am pleased to say — and I hope that he will be pleased by my saying it — that Eckert was responsible."

Eckert set Bernie to designing standard flip flops, standard gates, and other electronics for the computer. Bernie later said:

"He had allowed only a few working days to do this. I didn't know I couldn't do it, so I set out to do it."

Having done it, Bernie went on to design the crystal transducer system for the acoustic memories and then all of the memory system. Eckert and Weiner were tough masters. Bernie retained his delight at once seeing them make a worse mistake than any the engineers were punished for making:

"Jim Weiner established the rule that whenever anybody made a mistake such as putting a screw driver or a scope probe in the wrong place and blew up a diode, he would have to buy a Coca-Cola for all the employees of the company, approximately 30. However, one day Jim Weiner himself put his screw driver into the wrong place and blew up all 18,000 diodes! It made us all feel much better."

Bernie later had high praise for Eckert's methods and adopted them as a philosophy:

"He felt, I believe, that any engineer worth his salt should be able to design anything at any time, either electrical or mechanical. If he didn't know how to do it, then it was his responsibility to go out and learn how to do it."

Though highly influential on Bernie, the tutelage of Eckert was chronologically brief. After Sperry Rand Corporation bought Eckert-Mauchly, and the methods of large corporations began to replace those of Eckert, Bernie resigned and went to work for Laboratory for Electronics, a firm in the Boston area that was formed by individuals from the wartime Radiation Laboratory at MIT. There, he helped develop a Doppler navigating radar. It was the last work he would do as someone else's employee.

In the course of his radar investigations, Bernie met An Wang, another young innovator, who had just started Wang Laboratories, Inc. Bernie and An built and patented a sequenced number generator, the forerunner of all electronic dot matrix displays. It was used in the navigational computer on which Bernie was then working.

Marriage and family[edit]

First married while still a teenager, after a period of years it became clear to both Bernie and his first spouse that it was not working out.

Later, at approximately age 32, he married Sophia, a former citizen of Greece. After having survived World War II there, she emigrated to the United States, joining the large population of Greek-speakers here. In addition to being supportive of her husband's innovative mission, Sophia has had a mission of her own to keep him healthy. A dancer, nutritionist and fitness savant in her own right, she makes sure that he eats right and gets his exercise. He still rides the bicycle.

In keeping with her own positive philosophy, Sophia has been a partner in Bernie's philanthropy. Some of the projects they support are named after her, such as the Sophia Gordon Center of the Arts at Salem State University. The pair are always seen together in their now busy social life.

Entrepreneur[edit]

In 1953, five years after graduation from MIT, Bernie Gordon had already worked for or with some of the leading innovators of the computer industry. Now his work with computers led him into the concept of multi-processing and the connecting of computers with analog signals. As computers were now all digital, an analog-to-digital signal transducer was required.

Bernie went into business with Joe Davis, founding EPSCO, Inc., which had one product line, the DATRAC,

"the first known shift programmed successive approximation A/D converter." The company eventually grew to employ some 3,000 people.

The converter was solid work, for which Bernie became known as "the father of high-speed analog-to-digital conversion."

In 1964, he founded Gordon Engineering, where he invented the first solid-state X-ray generator. In 1969 Gordon Engineering became Analogic Corporation, which specialized in analog-to-digital conversion applications. Computers had gone on to digital transmission, but in many circumstances, such as measurement of a natural variable (temperature, voltage, weight, etc.), the input signal is analog and must be converted to digital before it can be manipulated by digital computers.

Analogic's business therefore became the design and manufacture of increasingly complex measurement and detection devices, especially in the fields of medical and industrial imaging, and measurement systems. Any application that computerizes a natural variable used for detection, whether visual, x-ray, sound, temperature, or some other, is a potential market for Analogic products.

At Analogic, Bernie served in the following positions:

  • Chairman of the Board of Directors from 1969 to 2004
  • President from 1980 to 1995 and from 2001 to 2003
  • Executive Chairman from 2002 to 2004
  • Chief Executive Officer from 1973 to 2000 and from 2002 to 2003.

These positions do not tell the real story. Bernie always took a personal hand in hiring, evaluating, training, and mentoring engineers. He was the project leader for many projects. His management style was the informal family-type of management practiced by Eckert, in which distinctions of status were not made, and every engineer spoke freely.

Bernie left Analogic to pursue his interests in the field of medical instrumentation, co-founding NeuroLogica Corporation of Danvers, Massachusetts, in February 2004, and serving as Chairman of the Board. Its first project was a portable imaging system, for neurological scanning applications, which would assist stroke and trauma victims.

Entrepreneurial consultant[edit]

  • Tufts University — Bernie had a long-standing attachment to Tufts University, where he had studied under the Navy's V-12 program as a teenager. In 1992 the Tufts University School of Engineering absorbed the Gordon Institute, which then became the Tufts Gordon Institute, offering education in engineering management. This success brought him into focus at Tufts as a potential leader, and in 1996 he was elected to the Tufts Board of Trustees. Currently he serves on the Committee for University Advancement, the Audit Committee, and the Board of Overseers for the Tufts University School of Engineering.
  • Lahey Clinic — Chairman of the Board of Directors
  • Analogic — After the recession that began in the year 2000, Analogic weathered the storm well for most of it. Toward the end, however, the medical division began to take large losses. Bernie no longer owns Analogic, but he was willing to come to the rescue of the company he had founded if he could. On November 8, 2006, the Board reappointed him Executive Chairman on an interim basis. Reducing expenses were his first concern, followed by a search for a new principal executive officer. James Green was selected to be President and Chief Executive Officer of Analogic Corporation in May 2007.

Professional contributions[edit]

Patents[edit]

No article can capture the inventiveness of an inventive man, which Bernie has been, since the days when he devised the cord-pulled lime-dropping device. Later in life he invented and received patents for the high-speed analog-to-digital converter, the instant imaging computer-aided tomography scanner, Digital Doppler radar, the fetal monitor, and an advanced bomb-detection device. A partial list of his patents follows:

  1. U.S. Patent 6,657,571 Data acquisition system using delta-sigma analog-to-digital signal converters
  2. U.S. Patent 6,256,404 Computed tomography scanning apparatus and method using adaptive reconstruction window
  3. U.S. Patent 6,252,531 Data acquisition system using delta-sigma analog-to-digital signal converters
  4. U.S. Patent 6,188,745 CT scanner comprising a spatially encoded detector array arrangement and method
  5. U.S. Patent 6,067,342 Digital filmless X-ray projection imaging system and method
  6. U.S. Patent RE36,099 X-ray tomography apparatus
  7. U.S. Patent 5,867,553 Computed tomography scanner with reduced power x-ray source
  8. U.S. Patent 5,841,828 Self-calibrating ring suppression filter for use in computed tomography systems
  9. U.S. Patent 5,818,897 Quadrature transverse CT detection system
  10. U.S. Patent 5,808,376 Method of and apparatus for power management and distribution in a medical imaging system
  11. U.S. Patent 5,796,802 Multiple angle pre-screening tomographic systems and methods
  12. U.S. Patent 5,768,331 X-ray tomography system for and method of improving the quality of a scanned image
  13. U.S. Patent 5,745,542 Ring suppression filter for use in computed tomography systems
  14. U.S. Patent 5,661,774 Dual energy power supply
  15. U.S. Patent 5,577,026 Apparatus for transferring data to and from a moving device
  16. U.S. Patent 5,432,339 Apparatus for and method of measuring geometric, positional and kinematic parameters of a rotating device having a plurality of interval markers
  17. U.S. Patent RE34,379 X-ray tomography apparatus
  18. U.S. Patent 5,109,397 X-ray tomography apparatus with lateral movement compensation
  19. U.S. Patent 4,928,283 X-ray tomography apparatus
  20. U.S. Patent 4,801,851 Oscilloscope memory control
  21. U.S. Patent 4,758,963 Modular computing oscilloscope with high speed signal memory
  22. U.S. Patent 4,677,554 Tomography data acquisition system with variable sampling rate and/or conversion resolution of detector output signals
  23. U.S. Patent 4,569,028 Adaptive digitizer circuit for information processing system
  24. U.S. Patent 4,547,893 Continuous wave fan beam tomography system having a best-estimating filter
  25. U.S. Patent 4,350,974 Logarithmic analog-to-digital converter
  26. U.S. Patent 4,152,659 Low noise differential amplifier
  27. U.S. Patent 4,142,185 Logarithmic analog-to-digital converter
  28. U.S. Patent 4,135,247 Tomography signal processing system
  29. U.S. Patent 4,008,405 Motion detection circuit for electronic weighing system
  30. U.S. Patent 4,002,964 Temperature compensation technique

Gordon prize[edit]

Main article: Gordon Prize

Academic contributions[edit]

Bernie has always brought an analytical approach to the topic of engineers and engineering in general. Recently he said:

"I've been outspoken about improving our competitive engineering capability, the ability to turn out a project on time, meeting specifications. How could it be that the Romans built aqueducts 2,000 years ago that are still standing today, while the ceiling on the Big Dig tunnel came down in two years?"

Bernie's view is that a large part of the problem of obtaining good engineering is firstly the education of the engineers, and secondly the management of engineering projects. He has therefore committed some of his resources to the following programs to address the problem.

Bernard Marshall Gordon professorship[edit]

Bernie endowed the Bernard Marshall Gordon Professorship of Engineering Innovation and Practice at MIT.[2] It rewards and encourages engineering education for innovation and innovative management. (See under External links below).

Gordon Institute[edit]

Bernie founded the Gordon Institute[3] in 1984 in Wakefield, Massachusetts, to teach engineering leadership. He wanted to impart Eckert's and his own methods and style of management, which he believed would bring about the economic success of engineering projects. By that time Bernie's main enterprise, Gordon Engineering/Analogic had survived twenty years in the very competitive electronics business.

By 1992 he had decided the Institute would reach more people as part of a university. He had Tufts in mind, and they were delighted to find such an educational asset already in place. With Bernie willing to underwrite the expense, they acquired Gordon Institute and made it part of their regular program. It was moved from Wakefield to Medford in 1994. At Tufts, one can now study for a Master of Science in Engineering Management at the Gordon Institute in a one- or two-year program.

The Institute has trained or strengthened the skills of managers at a number of large corporations, such as GE, Compaq, Toshiba and others. It emphasizes breaking out of specialties to see the big picture.

Bernard M. Gordon - MIT Engineering Leadership Program[edit]

Launched in 2008 through a $20 million gift by the Gordon Foundation — the largest gift made to MIT's School of Engineering for curriculum development — the Program aims to create new approaches to prepare students for engineering leadership, and to ensure that MIT continues to lead the nation in developing effective engineering leaders.

Through project-based learning, extensive interaction with industry leaders (including the Program's unique InternshipPlus opportunities), hands-on product development, engineering leadership labs, and authentic leadership challenges and exercises, the program transforms a highly motivated group of undergraduate students into engineering leaders who will fuel America's technology engine.

The program offers MIT undergraduates a one-year program for seniors, or a two-year program for juniors. The two-year students guide the larger group, as a group of approximately 20–30 seniors. This is a new change in the program, to make leadership education available to the wider MIT community. Previously, there was only a two-year program offered.

Philanthropic contributions[edit]

Gordon foundation[edit]

In 2003, Bernie had his lawyer, Julian Soshnick, set up the Bernard M. Gordon Charitable Remainder UniTrust, which sells Analogic shares and gives away the money. Bernie donated all his shares to it. Julian also had taken an intense interest in the charity and was a contributor himself. To date, the recipients of monetary gifts include:

About his altruism, Bernie said::"My primary motivation, even from the beginning, was never self-serving. I derive satisfaction from doing something that is useful for other people. I was brought up that way, and I was trained that way."

Awards[edit]

Publications[edit]

Notes[edit]

  1. ^ As of January, 2007, the book of Bernie's earthly life is still open. Consequently there are no scholarly sources on his life and works. The material for this article is taken entirely from articles about or by him available on the Internet and listed under External sources or in embedded links. The quotations come from there as well. The article is only as good as the sources.
  2. ^ This professorship is not to be confused with the many Gordon professorships all across the country.
  3. ^ Not to be confused with the many other Gordon Institutes across the country
  4. ^ "IEEE Ernst Weber Engineering Leadership Recognition Recipients". IEEE. Retrieved November 20, 2010. 

References[edit]

Kenney, Charles C., Riding the Runaway Horse: The Rise and Decline of Wang Laboratories(Little Brown & Co., 1992) Schneider, James G., The Navy V-12 Program: Leadership for a Lifetime (Marlow Books, 1987)

See also[edit]

External links[edit]

General Background[edit]

Military[edit]

Technical[edit]

Gordon professorship[edit]

Philanthropy[edit]