Bilevel rail car

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Double-deck rail car operated by Agence métropolitaine de transport in Montreal, Canada
Bombardier double-deck rail cars in Germany, used extensively on suburban trains (here: S-Bahn Rostock)
A double decker Sydney Trains Waratah Train approaching Strathfield train station

The bilevel car (North American English) or double-decker coach (British English) is a type of rail car that has two levels of passenger accommodation, as opposed to one, increasing passenger capacity (in example cases of up to 57% per car).[1] In some countries such vehicles are commonly referred to as dostos, derived from the German Doppelstockwagen.

The use of double-decker carriages, where feasible, can resolve capacity problems on a railway, avoiding other options which have an associated infrastructure cost such as longer trains (which require longer station platforms), more trains per hour (which the signalling or safety requirements may not allow) or adding extra tracks besides the existing line.

Bilevel trains are claimed to be more energy efficient,[2] and may have a lower operating cost per passenger.[3]

The height of the cars can limit their use, especially in countries with low loading gauges. In some countries such as the UK new lines are built to a higher than the existing structure gauge to allow the use of double-deck trains in future.[4] The high passenger capacity can create flow and problems at train stations when much larger numbers of passengers try to board or disembark at the same time.[1]

History[edit]

voitures à impériale

Double deck carriages date to at least as early as the second half of the 19th century. In France several hundred voitures à impériale with seats on the roof were in use by the Chemins de fer de l'Ouest, Chemins de fer de l'Est and Chemins de fer du Nord by 1870, having been in use for over 2 decades; the design was open at the sides with a light roof or awning covering the seats. In the 1860s M.J.B. Vidard introduced two storied carriages on the Chemins de fer de l'Est, with a full body, windows, and doors; the same design lowered the floor of the lower storey to keep the center of gravity low. Vidard's carriages had a total height of 13 feet 8 inches (4.17 m) with the head height in the lower carriage only 5 feet 5 inches (1.65 m); the carriages had a capacity of 80 persons (third class) in a 2 axle vehicle of 13 tons fully loaded.[5]

Typical design[edit]

The double-deck design usually includes lowering the bottom floor to below the top level of the wheels, closer to the rails, and then adding an upper floor above. Such a design will fit under more bridges, tunnels and power wires (structure gauge). For cost and safety, this design also minimizes car height (loading gauge) and lowers the centre of gravity.

Depending on train station platform heights, three designs can be used for entry - high platforms require use of a "split level" car design, where the doors are located on a middle level, with access into the upper or lower level branching off - with stairs or ramps going both up and down (sometimes this configuration includes a section of seating at the middle level in the entry section, with double levels only in part of the lengths of the car).[1] For low train station platforms, a "two floor" design with level entry onto the lower floor is used. Occasionally a third, very tall "two floors over-wheel" design is used. This is a traditional single floor car "with a second story" design with, when using low platform, requires steps up to a traditional floor height and then internal stairs up to the upper floor.

Platform height and floor height issues[edit]

There are four important height measurements above the railhead: platform height, traditional floor height, downstairs floor height and upstairs floor height. Platform height determines the level entry height for wheeled objects, such as luggage, strollers, wheelchairs and bicycles. Platform height is ideally standardized across all stations the train serves. Traditional rail car floor height matters for end doors connecting to existing single floor rail cars. Downstairs or lowest floor height is primarily determined by the thickness of the beams connecting the span between the wheels and bogies (trucks) of a rail car. The upstairs floor or highest floor height is above the lowest floor and must fit under bridges and tunnels. Level entry floor height must match the platform height. Hopefully either the traditional or downstairs floor height already matches the platform height. Despite the name "bilevel" or "double-decker", for maximum compatibility the rail car will have up to four different floor heights. High platform design (Using outside steps to avoid having a level entry from the platform) is troublesome.

Common low platform design[edit]

Most low platform double-decker trains have level entry onto the lower level of the car, allowing wheelchair access. There are two floor heights (upstairs and downstairs) in these "bilevel" cars. There is a staircase between floors inside the car. Connecting doors between cars are either at the (higher) upper floor or at an intermediate level over the bogies. In the former case, connecting directly to a single level car causes drag and connecting door problems.

In the western USA, cars are of the upper-level-connection type. They use low platform stations, because the traditional single floor trains all had exterior entry steps to maximize flexibility (emergency and temporary stops) and minimize infrastructure costs. There are no examples of two floor platforms, so there are no platform doors on the upper floor. Car roof lines lengthwise are flat for connecting doors to the upstairs of bi-level cars. A Bombardier Amtrak Superliner car is 16 feet 2 inches (4,930 mm) tall.

Uncommon very tall design[edit]

There are several very tall bilevel cars (e.g. Colorado Railcar has 19 feet 9.5 inches (6.033 m; 6,032 mm) . They typically are described as a traditional rail car with a second story. Most of these cars serve low platforms so they have exterior steps up to the traditional "over-wheel" floor height e.g. US 51 in (1,300 mm). End doors connect at the traditional height of existing rolling stock. Some cars have upstairs end doors as well. Many of these cars also include outside balconies on either the upper or lower level. Upstairs and downstairs connect by interior stairs. These cars can fit most able people, but lack level entry. On almost all these cars the upper level consists of a full length glass dome. Some cars are self-propelled Multiple Units so using traditional floor heights appears fixed. In towed cars it is possible to lower the downstairs floor between the wheels/bogies so that level entry is possible with more than 500 mm (19.7 in) of added headroom and interior steps from that floor to the traditional floor.

Operators[edit]

Argentina[edit]

First Argentinean double-decker electric coaches.

In 2005, EMFER rolling stock factory, Trenes de Buenos Aires (TBA (Trains of Buenos Aires), National Institute of Industrial Technology and the Argentine National Government subscribed to a framework agreement to start the national designing and construction of bi-level electric trains. This was decided due to the overwhelming and increasing amount of passengers using the 1,676 mm (5 ft 6 in) gauge urban D F Sarmiento Railway, serving the centre and east of Greater Buenos Aires. The first prototype was released in 2005, but mass-production only started in mid 2008. From then and up to December 2012, only five units have been produced, because of budgetary problems and the extinction of the TBA enterprise, which left production on hold. Since 2011, the trains have a new aerodynamic front along with some improvements in the driving cab and minor cosmetic changes.

In 2010, EMFER and TBA (Trains of Buenos Aires) presented non-engined double-decker coaches for a 100 km (62 mi) diesel interurban link between Buenos Aires and Mercedes city. Attending to different technical needs, the new coaches have only two simple non-automatic doors in the ends (instead of the two electric double doors in the middle) and were designed for low platforms. They also have greater passenger capacity and more comfortable seats, among other facilities including WiFi and TV.

Australia[edit]

Interior of a H set carriage in Sydney

In 1964, Tulloch Limited built the first double-decker trailer cars for use in Sydney. They ran with single deck electric motor cars. After the success of the trailers, Tulloch made one eight-car experiment double decker multiple unit in 1968. These were the first fully double deck Electric Multiple Unit passenger trains in the world.

From 1972, more double decker multiple units were constructed by Comeng and Goninan. These are now known as the S sets. All electric commuter and intercity trains in Greater Sydney are now double deck. They all have two doors per side per carriage, with a vestibule at each end at platform height. The Sydney double deck commuter trains are 14 ft 4.5 in (4,382 mm) high.

The Public Transport Corporation in Melbourne ordered a prototype Double Deck Development and Demonstration train in 1991, a modification of the successful Tangara design used in Sydney. It suffered frequent breakdowns and spent long periods out of use. It was finally withdrawn in 2002 and scrapped in 2006.

Canada[edit]

A Rocky Mountaineer bi-level car built by Colorado Railcar

Several passenger rail operators use bilevel passenger cars in their fleets: GO Transit, West Coast Express, and Agence métropolitaine de transport (AMT) use bi-level cars for commuter services. The rail tour company Rocky Mountaineer also uses bilevel full length dome cars built by Colorado Railcar.

All rolling stock for both GO Transit and West Coast Express are bilevel designs produced by Bombardier Transportation. AMT operates a fleet of bilevel passenger rail cars produced in 1969 by Canadian Vickers for the Canadian Pacific Railway's "Town Car" service; CPR's commuter rail operations in Montreal were discontinued in the late 1970s and these bilevel cars were sold to AMT. This rolling stock is scheduled to be replaced in AMT service by split-level cars being produced by Bombardier Transportation. The Bombardier split-level cars are being built principally for the restrictive structure gauge of the Mount Royal Tunnel and to accommodate the low level platforms along the Deux-Montagnes line as well as the 51-inch (1,295 mm) high platforms of Montreal Central Station. They are 14 ft 6 in (4.42 m) high.

Older bilevel cars used in Canada are not low floor designs and are therefore not wheelchair accessible. New bilevel cars such as the ones produced by Bombardier Transportation are wheelchair accessible, allowing operators of those cars to offer spaces for wheelchair passengers.

Canada's national intercity passenger railway, Via Rail Canada, does not currently operate any bilevel cars in its rolling stock fleet although during the late 1980s and early 1990s it had examined purchasing Superliner II equipment; this did not occur as the company endured a significant budget cut in 1990 and opted to instead rebuild the former Canadian Pacific Railway stainless steel passenger car fleet produced by the Budd Company.

Ontario Northland's intercity passenger train Polar Bear Express operates a domed car that has two levels, however, this car is not technically considered a bilevel passenger rail car.

Denmark[edit]

In Denmark, DSB began running Bombardier Double-deck Coaches in 2002. The coaches are used in Regional service on Zeeland, but also in Intercity-service to Jutland.

Finland[edit]

In Finland, VR began operating double-decker day cars in 1998. The cars are Finnish design, and have been manufactured by Transtech in Kajaani. The cars have two entries on the lower section in the middle, as the modern Finnish platforms are on 550 mm (21.7 in) height.[6] The sections at the both ends of the car are on mid-level. VR introduced the first double-decker sleeping cars on 1 February 2006. The two-bed cabins on the upper deck have toilets and showers while cabins on the lower deck use shared ones. Double-decker control cars are to be introduced during late 2013 and restaurant cars in early 2014.

The double-decker cars are designed for higher speeds than ordinary passenger wagons - up to 200 km/h (124 mph), but they were later given speed restrictions on driving into tunnels. They are very often operated as all-double-decker InterCity trains (called IC2) with at seat power supplies for laptops and wireless LAN internet connection.

France[edit]

French suburban double-deck train

The Chemin de fer de l'État in France ran voitures à 2 étages double-deck suburban coaches from 1933. Its successor, the SNCF, has been running VB2N double-decker coaches since 1975; VB2N were introduced from 1975 as a replacement of the État cars.

Since the late 1980s, SNCF has been running double-deck RER trains. SNCF runs double-deck TGV cars on heavily used high-speed services, such as on the Paris-Lyon-Marseille line. Many suburban rail, regional rail and high-speed services are operated by double-deck DMUs, EMU, coaches and TGV.[clarification needed] The French loading gauge dictates that the double-deck cars have a maximum height of 4.20 m (13 ft 9.4 in).[? clarification needed as TGV Duplex are 4.32 m (14 ft 2.1 in) high]

Hong Kong[edit]

MTR and formerly KCRC operate double-decker carriages with the KTT train sets. These cars were manufactured in Japan by Kinki Sharyo .

India[edit]

In India, the Flying Ranee, a passenger Train between Surat and Mumbai Central on the Western Railway Track uses double-deck cars, since 1970. Double Decker coaches was the part of Howrah-Dhanbad Black Diamond Express for many years during the mid 1980s. 2 Coaches were there right at the middle of the entire train. But those coaches were withdrawn later for some unknown reason.

12932 Ahmedabad Double Decker at Borivali station

Indian Railways introduced its first air-conditioned double deck train in 2011 on the Howrah – Dhanbad Double Decker Express between Howrah station in West Bengal and Dhanbad Junction in Jharkhand.[7] which were Subsequently followed by Delhi Sarai Rohilla - Jaipur, Ahmedabad - Mumbai, Chennai Central - Bangalore[8] and Bhopal Habibganj - Indore.

Italy[edit]

Italian bilevel train TSR at Milano Affori railway station

In the seventies, with the rise of mass commuting to the big cities the Ferrovie dello Stato have found themselves having to quickly increase the capacity of their services with Carrozze Due Piani Tipo 1979 (see it:Carrozza Due Piani). Today, using double-decker coaches also private railway companies Ferrovie Nord Milano and Ferrovie del Sud Est. The types of double-decker train is circulating today in Italy are: Vivalto, TAF, TSR.

Japan[edit]

Osaka City Tram Type 5
Kintetsu 30000 series Vista Car introduced in 1978

In Japan, double-decker trains are used either to show better scenery, or to increase seat capacity. In Tokyo area commuter trains, double-decker cars are generally used as Green Cars, a type of reserved-seating-only cars with better accommodations than the regular commuter cars. The first Japanese double-decker train appeared in 1904. It was Type 5 train of Osaka City Tram.[citation needed] Sightseeing trains that feature double-decker carriages include the JR Shikoku 5000 series, Keihan 8000 series, JR Central 371 series, and Odakyu 20000 series RSE. The first JNR/JR double-decker trains were 200 series Shinkansen and 100 series Shinkansen, for Shinkansen lines.

E4 series Shinkansen

JR East introduced the 215 series double-deck EMUs for Home Liner services in 1992. JR East also introduced E1 Series Shinkansen and E4 Series Shinkansen for its Shinkansen Lines; the trains are doubled decked to increase their capacities. This includes JR West 285 series EMUs for Sunrise Izumo/Sunrise Seto and JR East E26 series cars for Cassiopeia services.

Russia[edit]

In 2012, a prototype double-decker rail carriage was made at the TVZ Tver Carriage Building Factory for the RZD Russian Railways company. This prototype carriage is a sleeping car with four-berth compartments and a total capacity of 64 passengers. Russian Railways ordered double-decker sleeper carriages from Transmashholding for the Adler-Moscow train service. As of August 2012 they were expected to be delivered in time for the 2014 winter Olympics in Sochi.[9] RZD offers low platforms for Moscow-Adler route.

Sweden[edit]

X40 arriving in Eskilstuna

SJ AB operates 43 double-decker EMUs built by Alstom and designated class X40. The EMU comes in a two-coach version and a three-coach version. The trains are mainly used in regional trains in the areas around lake Mälaren and in the trains between Gävle and Linköping. It has a maximum speed of 200 km/h (124 mph) and is equipped with wireless internet.

Between 1966 and 1990 SJ used DMUs of class Y3 with double-decker end cars and normal cars in between. Due to the to distinct humps on the endcars it was nicknamed "the camel".

Switzerland[edit]

IC 2000 between Zürich and Luzern with the control car leading the train

Double-decker commuter trains are used by the Zürich S-Bahn. Two types of trains are used, an older type consisting of an electric locomotive with double-decker cars, and Electric Multiple Units where the motors are on board the car. From 2010 onwards, a third type – the Stadler KISS – is scheduled to enter service.

The Swiss Federal Railways also operate the IC 2000 double-decker passenger coaches in most of Switzerland.

Ukraine[edit]

One of two EJ675 EMUs operated by Ukrainian Railways

In 2012, as part of preparation for UEFA Euro 2012, Ukrainian Railways bought two EJ675 EMUs manufactured by Škoda Transportation. These trains are used on inter-regional (Intercity) services on Kharkiv - Kiev line. EJ675 electric multiple units operate at a maximum speed of 160 km/h, but are capable of achieving speeds of up to 180 km/h.

United Kingdom[edit]

In the United Kingdom, due to the small loading gauge, the railway system cannot accommodate double-deck trains. A modest attempt at double decking was made in 1948 on the Southern Railway with the two trains of the Bulleid 4DD class. Although innovative, with stepped compartments, where the bottoms of the upper seats are above the heads of the people on the lower level, but the feet of the people above are not, see,[10] the loading gauge severely restricted their use and they were removed from service in 1971.

Double-decker trams were common in British cities prior to the dismantling of the networks between the 1930s and 1960s.

United States[edit]

Bi-level New Jersey Transit train led by a cab car with quarter-point and end doors. Note how the cab car makes the train less aerodynamic.
Nippon Sharyo bi-level car used on Caltrain service

Bilevel passenger rail cars used in the United States are manufactured by Bombardier, Kawasaki, Colorado Railcar, and several others, with the former two having produced the majority of the high platform "split level" commuter rail cars in use in the northeastern states.

Colorado Railcar produced bilevel DMUs and Ultra Dome passenger cars. Colorado Railcar cars measure (19 ft 9.5 in or 6,032 mm) in height and have steps that enter to a lower deck that is (51 in or 1,300 mm) above the rail.

Other designs, including rolling stock made by Colorado Railcar, Budd, Pullman-Standard, Bombardier and others have an entrance on the lower deck rather than an intermediate level. Amtrak Superliners are double-decker cars of this variety, with the entrance a step or so up from the lowest station platform level, or at the level of slightly higher platforms, and allow passage from car to car on the upper level.

Long-distance trains[edit]

In the US, most of Amtrak's intercity passenger trains operating to points west of Chicago use Superliner bilevel passenger rail cars. Certain Amtrak trains between Chicago and the Southeast and the AutoTrain also use Superliner bilevel passenger rail cars. In addition, Alaska Railroad operates passenger trains with a mix of traditional passenger equipment and large fleets of Colorado Railcar Ultra Domes (sometimes any many as 15 in one train) owned by several major cruise ship lines.

Northeastern United States and Quebec[edit]

Most passenger rail lines in the northeastern states have a loading gauge that can only accommodate cars less than 14 ft 6 in (4,420 mm) in height; this is due to structure gauge restrictions such as bridges and tunnels that are too low, and may also have electrified lines overhead.

Exceptions in this region include bilevel passenger rail cars that run on New York City's Long Island Rail Road and New Jersey Transit, Montreal's AMT, Maryland's MARC and Boston's MBTA Commuter Rail, all of which were built to unique designs to clear specific structure gauge problems on those systems.[11][12] The bilevels used on LIRR, MARC, and MBTA were built by Kawasaki Rail Car, Inc., while the bilevels for AMT and NJ Transit were built by Bombardier Transportation.[13][14] Recently Rotem has built additional new cars of a similar design for MBTA.

In each of these agencies' bilevel cars, two levels are present between the trucks of the car. At each end, stairs lead from both levels to a common floor which is located at standard height over the trucks. All LIRR bilevel passenger rail cars have two wide quarter-point doors on each side, for high level platforms only. The bilevel cars used by NJ Transit and AMT have four doors on each side, two quarter-point doors at high level platform height and one at each end vestibule, with traps used to reach low level platforms. The bilevel cars used by MARC and MBTA have side doors with traps at each end vestibule.

California[edit]

Due to the typically-generous clearances on California railroads, bilevel cars are common in the state. The California Department of Transportation owns 88 California Cars, which are based on the Superliner body shell, but with high-density interiors suitable for corridor trains. These cars, along with 39 owned directly by Amtrak, are dedicated to state-subsidized Amtrak California routes including the San Joaquin, Capitol Corridor and Pacific Surfliner routes.[15]

Chicago[edit]

Bilevel passenger rail cars used by Metra commuter rail in Chicago are known as "gallery cars" (see below) as there is an open space between the two sides of the upper deck, allowing ticket collectors to check tickets on both levels from the bottom level. Chicago does not have the loading gauge problems that affect passenger rail lines in most northeastern states; consequently all Metra commuter rail rolling stock are bilevel passenger rail cars.

Other countries[edit]

Dutch NS VIRM bilevel train at station Amsterdam Bijlmer ArenA

In the Netherlands, there are three types of double-deck trains, DDM-1 carriage based trains, the DD-AR and the VIRM (Regiorunner). The VIRM, is an example from the Netherlands, of High platform (split level) double-decker cars. It is one step up from the station platform to the entrance, and from there seven steps upstairs or four steps downstairs.

In Spain several lines of Cercanías (Renfe's commuter rail service) use double-deck trains.

In Germany Bombardier's double-deck rail cars are also used extensively on suburban trains by the DB. The same rail cars serve some of the routes on the Israel Railways network, hauled by diesel locomotives and include electric generators housed in the control car.

In Iran, the Tehran-Hashtgerd suburban commuter line is served with electric push-pull hauled trainsets with double-decker carriages manufactured by Wagon Pars in Iran.

In Hong Kong, the Kowloon-Canton Railway Corporation uses double-deck cars, named "Ktt", on its cross-boundary route between Kowloon and Guangzhou. In January to May 1998 the "Ktt" cars were used to serve between the Hung Hom and Lo Wu stations. The "Ktt" cars have lower bottom floor than the ordinary single-deck cars serving on the same pair of tracks.

In China, Changchun Railway Vehicles offers a double deck coach.

See: Double Deck Train in China

Gallery cars[edit]

A Nippon Sharyo bi-level passenger car operated by Caltrain

Because of the two levels being separate on most cars, there is a physical limitation on the conductor, as it is difficult for him or her to verify, collect payment and sell tickets to such a large concentration of passengers in one car on each level, owing to the sometimes short distance between stops.

In 1955, the St. Louis Car Company came up with a solution in the form of the "gallery" car design,[16] which features upper levels, which are "mezzanines" or "balconies" running along both sides of the car, with an open area between them.[17] Most gallery cars have four separate galleries with four separate stairwells to the main level (one on each side, split in the middle by the central vestibule). This make loading and unloading of the upper level much more efficient.[17]

The split balcony enables the conductor(s) walking along on the lower level to easily reach up and punch or validate tickets of the passengers seated on the mezzanine level. Passengers can place their tickets in clips along a lengthwise panel, located slightly above the conductor's head and within easy reach. The conductor can then quickly check tickets and move to the next car.

Beginning in 1959, gallery cars on the Chicago and Northwestern were equipped with the AAR standard multiple-unit train control system and a control cab[16] that allowed true high speed push-pull train operations without requiring any operators in the locomotive when operating in push mode. This combination of high passenger capacity, rapid turnaround (or flip-backs) and highly reliable push-pull operations has resulted in almost universal adoption of bilevel push-pull operations for commuter and non-electrified corridor services throughout North America.

Another advantage of bilevel gallery cars is the relatively low first step of the vestibule entrance to the car, which is 14 58 inches (371 mm) above the head of the rail. The advantage of this is that commuter rail operators do not have to spend funds on building high-level platforms; a low-level platform is all that is necessary, at a far lower cost. This can be a major disadvantage as well, as many commuter rail systems prefer high-level platforms as they can decrease loading and unloading times substantially, and greatly improve access to trains for the disabled.

Gallery cars have been in constant use since their introduction in 1955. The Chicago and Northwestern was ths first to receive them followed immediately by the Southern Pacific Railroad. Today, such cars are still used by Metra in and around Chicago, by Caltrain along the west side of San Francisco Bay, by Montreal's Agence métropolitaine de transport, by Virginia Railway Express in Northern Virginia, by Nashville's Music City Star and by MARC Train in Maryland. They provide high capacity (155 to 169 passengers each). Chicago's commuter rail system is currently receiving new versions of these cars. Caltrain, the San Francisco peninsula commuter rail service, has recently overhauled its fleet.

See also[edit]

References[edit]

  1. ^ a b c "L.I.R.R. May Add Double-Decker Coaches". The New York Times. 21 September 1988. Retrieved 11 January 2011. 
  2. ^ "How green are our trains? We don't know, AMT says". The Montreal Gazette. 10 January 2011. Retrieved 11 January 2011. [dead link]
  3. ^ "Via Rail begins experiment with Amtrak bi-level train". The Phoenix. 21 September 1984. Retrieved 11 January 2011. 
  4. ^ "Double-decker trains may ease overcrowding". The Telegraph. 30 December 2005. Retrieved 11 January 2011. 
  5. ^ "Two-storied railway carriages", Engineering 9, 27 May 1870: 377 
  6. ^ http://www2.liikennevirasto.fi/julkaisut/pdf4/rato_16_vaylat_laiturit_web.pdf
  7. ^ Disha Kanwar (2 October 2011), "First AC double-decker train flagged off from Bengal", www.business-standard.com 
  8. ^ "City-Chennai double-decker train". The Hindu (Bangalore). 25 April 2013. Retrieved 26 April 2013. 
  9. ^ "Double-deck sleeping car on test in Russia - Railway Gazette". Railway Gazette International. Retrieved 5 August 2012. 
  10. ^ "Bulleid Double Decker Society". Members.tripod.com. Retrieved 2010-07-07. 
  11. ^ LIRR
  12. ^ NJT
  13. ^ "Inc. - Bombardier - Home". Bombardier. 2010-07-02. Retrieved 2010-07-07. 
  14. ^ "Kawasaki MBCR Bi-Level Cars". Archived from the original on 26 July 2010. Retrieved 2010-07-08. 
  15. ^ Amtrak California and Surfliner Cars
  16. ^ a b url=http://www.irm.org/railwire/rw179a1.html
  17. ^ a b "More renovated gallery cars in service on Fredericksburg Line". The Free Lance-Star. 22 February 2004. Retrieved 11 January 2011. 

External links[edit]