Biohybrid solar cell

From Wikipedia, the free encyclopedia
Jump to: navigation, search

A biohybrid solar cell is a solar cell made using a combination of organic matter (photosystem I) and inorganic matter. Biohybrid solar cells have been made by a team of researchers at Vanderbilt University. The team used the photosystem I (a photoactive protein complex located in the thylakoid membrane) to recreate the natural process of photosynthesis to obtain a greater efficiency in solar energy conversion. These biohybrid solar cells are a new type of renewable energy.[1][2]

Description[edit]

Multiple layers of photosystem I gather photonic energy, convert it into chemical energy and create a current that goes through the cell. The cell itself consists of many of the same non-organic materials that are found in other solar cells with the exception of the injected photosystem I complexes which are introduced and gathered for several days in the gold layer. After days the photosytem I are made visible and appear as a thin green film. It is this thin film that helps and improves the energy conversion. The biohybrid cell however, is still in the research phase.

Research[edit]

The team from Vanderbilt University began conducting research on the photosynthesis when they began to see and focus on the photosystem I protein. After seeing how widely available and efficient the protein was at solar conversion they began to look to incorporate and improve different technologies. The team used spinach as their source for the photosystem I. Thylakoid membranes were isolated and then went into a purification process to separate the photosystem I from the thylakoid membrane. Their research resulted in a greatly improved electrical current (1000 times greater) compared to those previous made by other solar cells. The team as been gathering a group of undergraduate engineers to help build the first prototype of the biohybrid solar cell. The team has also come up with a second design of the protein complex the photosystem II.

Photovoltaic vs Biohybrid[edit]

Comparing traditional photovoltaic cells and biohybrid solar cells is difficult. Both system perform the same task in general converting the energy captured from the suns rays and converting that into electricity. However, the method by which each is done is completely different and is the reason that comparing both system is hard to do. The end result is also different photovoltaic cells produce electrical current where as biomass or chemical fuels are produced in with biohybrid cells because of the photosynthesis involved in the process.[3]

Advantages[edit]

The biggest advantage the biohybrid solar cell has is the way it converts solar energy to electricity with almost 100% percent efficiency. This means that almost no power is lost through the conversion of chemical to electrical power. These numbers are great compared to only a 40% efficiency traditional solar cells. Cost is also a lot less for producing biohybrid because extracting the protein from spinach and other plants is cheaper compared to the cost of metals needed to produce other solar cells.

Disadvantages[edit]

While the efficiency of the biohybrid cells are much greater they also have many disadvantages. In many cases some solar cells have the advantages over a biohybrid solar cell. For one, traditional solar cells produce more power than those currently being achieved by biohybrid cells. The lifespan of biohybrid solar cells is also really short lasting from only a few weeks to about nine months. The durability of the cells prove to be an issue since current solar cells can for many years. [4][5]

References[edit]

  1. ^ Ciesielskia, Peter N; Frederick M. Hijazib, Amanda M. Scott, Christopher J. Faulkner, Lisa Beard, Kevin Emmett, Sandra J. Rosenthal, David Cliffel, G. Kane Jennings (May 2010). "photosystem I- Based biohybrid phtoelectrochemical cells". Biosource Technology 101 (9): 3047–3053. doi:10.1016/j.biortech.2009.12.045. Retrieved 24 October 2013. 
  2. ^ Yehezkeli, Omer; Ran Tel-Vered, Julian Wasserman, Alexander Trifonov, Dorit Michaeli, Rachel Nechushtai, Itamar Willner (13 March 2012). "Integrated photosytem II-Based photoelectrochemical cells". Nature communication. doi:10.1038/ncomms1741. 
  3. ^ blankenship, Robert E (13 May 2011). "Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement". Science 332 (6031): 805–809. doi:10.1126/science.1200165. PMID 21566184. 
  4. ^ Biohybrid solar cells made by a team of researchers at Vanderbilt University
  5. ^ biohybrid solar cell reference 2