Thermoregulation

From Wikipedia, the free encyclopedia
  (Redirected from Body temperature)
Jump to: navigation, search
"Body heat" redirects here. For other uses, see Body Heat (disambiguation).
"Body temperature" redirects here. For information regarding normal human body temperature, see Human body temperature. For the 2011 Japanese film, see Body Temperature (film).

Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation. The internal thermoregulation process is one aspect of homeostasis: a state of dynamic stability in an organism's internal conditions, maintained far from equilibrium with its environment (the study of such processes in zoology has been called ecophysiology or physiological ecology). If the body is unable to maintain a normal temperature and it increases significantly above normal, a condition known as hyperthermia occurs. For humans, this occurs when the body is exposed to constant temperatures of approximately 55 °C (131 °F), and any prolonged exposure (longer than a few hours) at this temperature and up to around 75 °C (167 °F) death is almost inevitable.[citation needed] Humans may also experience lethal hyperthermia when the wet bulb temperature is sustained above 35 °C (95 °F) for six hours.[1] The opposite condition, when body temperature decreases below normal levels, is known as hypothermia.

Whereas an organism that thermoregulates is one that keeps its core body temperature within certain limits, a thermoconformer is subject to changes in body temperature according to changes in the temperature outside of its body at a certain temperature.

It was not until the introduction of thermometers that any exact data on the temperature of animals could be obtained. It was then found that local differences were present, since heat production and heat loss vary considerably in different parts of the body, although the circulation of the blood tends to bring about a mean temperature of the internal parts. Hence it is important to identify the parts of the body that most closely reflect the temperature of the internal organs. Also, for such results to be comparable, the measurements must be conducted under comparable conditions. The rectum has traditionally been considered to reflect most accurately the temperature of internal parts, or in some cases of sex or species, the vagina, uterus or bladder.

Occasionally the temperature of the urine as it leaves the urethra may be of use in measuring body temperature. More often the temperature is taken in the mouth, axilla, ear or groin.

Some animals undergo one of various forms of dormancy where the thermoregulation process temporarily allows the body temperature to drop, thereby conserving energy. Examples include hibernating bears and torpor in bats.

Classification of animals by thermal characteristics[edit]

Endothermy versus ectothermy[edit]

Thermoregulation in organisms runs along a spectrum from endothermy to ectothermy. Endotherms create most of their heat via metabolic processes, and are colloquially referred to as warm-blooded. Ectotherms use external sources of temperature to regulate their body temperatures. They are colloquially referred to as cold-blooded despite the fact that body temperatures often stay within the same temperature ranges as warm-blooded animals.

Ectotherms[edit]

Main article: Ectotherm
Ectothermic cooling[edit]
Seeking shade is one method of cooling. Here Sooty Tern chicks are using a Black-footed Albatross chick for shade.
  • Vaporization:
    • Evaporation of sweat and other bodily fluids.
  • Convection:
    • Increasing blood flow to body surfaces to maximize heat loss.
  • Conduction:
    • Losing heat by being in contact with a colder surface. For instance:
      • Lying on cool ground.
      • Staying wet in a river, lake or sea.
      • Covering in cool mud.
  • Radiation:
    • releasing heat by radiating it away from the body.
Ectothermic heating (or minimizing heat loss)[edit]
  • Convection:
    • Climbing to higher ground up trees, ridges, rocks.
    • Entering a warm water or air current.
    • Building an insulated nest or burrow.
  • Conduction:
    • Lie on hot rock.
  • Radiation:
    • Lie in sun.
    • Angle in relation to sun.
    • Fold skin to reduce exposure.
    • Conceal wing surfaces.
    • Expose wing surfaces.
  • Insulation
    • Change shape to alter surface/volume ratio
    • Inflate the body
Thermographic image of a snake around an arm

To cope with low temperatures, some fish have developed the ability to remain functional even when the water temperature is below freezing; some use natural antifreeze or antifreeze proteins to resist ice crystal formation in their tissues. Amphibians and reptiles cope with heat loss by evaporative cooling and behavioral adaptations. An example of behavioral adaptation is that of a lizard lying in the sun on a hot rock in order to heat through conduction.

Endothermy[edit]

Main article: Endotherm

An endotherm is an animal that regulates its own body temperature, typically by keeping it at a constant level. To regulate body temperature, an organism may need to prevent heat gains in arid environments. Evaporation of water, either across respiratory surfaces or across the skin in those animals possessing sweat glands, helps in cooling body temperature to within the organism's tolerance range. Animals with a body covered by fur have limited ability to sweat, relying heavily on panting to increase evaporation of water across the moist surfaces of the lungs and the tongue and mouth. Mammals like cats, dogs and pigs, rely on panting or other means for thermal regulation and have sweat glands only in foot pads and snout. The sweat produced on pads of paws and on palms and soles mostly serves to increase friction and enhance grip. Birds also avoid overheating by gular fluttering, flapping the wings near the gular (throat) skin, similar to panting in mammals, since their thin skin has no sweat glands. Down feathers trap warm air acting as excellent insulators just as hair in mammals acts as a good insulator. Mammalian skin is much thicker than that of birds and often has a continuous layer of insulating fat beneath the dermis. In marine mammals, such as whales, or animals that live in very cold regions, such as the polar bears, this is called blubber. Dense coats found in desert endotherms also aid in preventing heat gain such as in the case of the camels.

A cold weather strategy is to temporarily decrease metabolic rate, decreasing the temperature difference between the animal and the air and thereby minimizing heat loss. Furthermore, having a lower metabolic rate is less energetically expensive. Many animals survive cold frosty nights through torpor, a short-term temporary drop in body temperature. Organisms when presented with the problem of regulating body temperature have not only behavioural, physiological, and structural adaptations but also a feedback system to trigger these adaptations to regulate temperature accordingly. The main features of this system are stimulus, receptor, modulator, effector and then the feedback of the newly adjusted temperature to the stimulus. This cyclical process aids in homeostasis.

Homeothermy versus poikilothermy[edit]

Homeothermy and poikilothermy refer to how stable an organism's temperature is. Most endothermic organisms are homeothermic, like mammals. However, animals with facultative endothermy are often poikilothermic, meaning that their temperature can vary considerably. Most fish are ectotherms, as all of their heat comes from the surrounding water. However, most are homeotherms because their temperature is very stable.

In vertebrates[edit]

By numerous observations upon humans and other animals, John Hunter showed that the essential difference between the so-called warm-blooded and cold-blooded animals lies in observed constancy of the temperature of the former, and the observed variability of the temperature of the latter. Almost all birds and mammals have a high temperature almost constant and independent of that of the surrounding air (homeothermy). Almost all other animals display a variation of body temperature, dependent on their surroundings (poikilothermy).

Certain mammals are exceptions to this rule, being warm-blooded during the summer or daytime, but cold-blooded during the winter when they hibernate or at night during sleep. J. O. Wakelin Barratt has demonstrated that, under certain pathological conditions, a warm-blooded (homeothermic) animal may become temporarily cold-blooded (poikilothermic). He has shown conclusively that this condition exists in rabbits suffering from rabies during the last period of their life, the rectal temperature being, then, within a few degrees of the room temperature and varying with it. He explains this condition by the assumption that the nervous mechanism of heat regulation has become paralysed. The respiration and heart-rate being also retarded during this period, the resemblance to the condition of hibernation is considerable. Again, Sutherland Simpson has shown that during deep anaesthesia a warm-blooded animal tends to take the same temperature as that of its environment. He demonstrated that, when a monkey is kept deeply anaesthetized with ether and is placed in a cold chamber, its temperature gradually falls, and that, when it has reached a sufficiently low point (about 25 °C in the monkey), the employment of an anaesthetic is no longer necessary, the animal then being insensible to pain and incapable of being roused by any form of stimulus; it is, in fact, narcotised by cold, and is in a state of what may be called "artificial hibernation." Once again this is explained by the fact that the heat-regulating mechanism has been interfered with. Similar results have been obtained from experiments on cats.

Brain control[edit]

Thermoregulation in both ectotherms and endotherms is controlled mainly by the preoptic area of the anterior hypothalamus.[2] Such homeostatic control is separate from the sensation of temperature.[2]

In birds and mammals[edit]

Kangaroo licking its arms to cool down on a very hot day

In cold environments, birds and mammals employ the following adaptations and strategies to minimize heat loss:

  1. Using small smooth muscles (arrector pili in mammals), which are attached to feather or hair shafts; this distorts the surface of the skin making feather/hair shaft stand erect (called goose bumps or pimples) which slows the movement of air across the skin and minimizes heat loss.
  2. Increasing body size to more easily maintain core body temperature (warm-blooded animals in cold climates tend to be larger than similar species in warmer climates (see Bergmann's Rule))
  3. Having the ability to store energy as fat for metabolism
  4. Have shortened extremities
  5. Have countercurrent blood flow in extremities - this is where the warm arterial blood travelling to the limb passes the cooler venous blood from the limb and heat is exchanged warming the venous blood and cooling the arterial (e.g., Arctic Wolf[3] or penguins[4][5])

In warm environments, birds and mammals employ the following adaptations and strategies to maximize heat loss:

  1. Behavioural adaptations like living in burrows during the day and being nocturnal
  2. Evaporative cooling by perspiration and panting
  3. Storing fat reserves in one place (e.g., camel's hump) to avoid its insulating effect
  4. Elongated, often vascularized extremities to conduct body heat to the air

In humans[edit]

Simplified information processing structure of human thermoregulation.

As in other mammals, thermoregulation is an important aspect of human homeostasis. Most body heat is generated in the deep organs, especially the liver, brain, and heart, and in contraction of skeletal muscles.[6] Humans have been able to adapt to a great diversity of climates, including hot humid and hot arid. High temperatures pose serious stresses for the human body, placing it in great danger of injury or even death. For humans, adaptation to varying climatic conditions includes both physiological mechanisms resulting from evolution and behavioural mechanisms resulting from conscious cultural adaptations.[7][8]

There are four avenues of heat loss: convection, conduction, radiation, and evaporation. If skin temperature is greater than that of the surroundings, the body can lose heat by radiation and conduction. But, if the temperature of the surroundings is greater than that of the skin, the body actually gains heat by radiation and conduction. In such conditions, the only means by which the body can rid itself of heat is by evaporation. So, when the surrounding temperature is higher than the skin temperature, anything that prevents adequate evaporation will cause the internal body temperature to rise.[9] During sports activities, evaporation becomes the main avenue of heat loss.[10] Humidity affects thermoregulation by limiting sweat evaporation and thus heat loss.[11]

The skin assists in homeostasis (keeping different aspects of the body constant, e.g. temperature). It does this by reacting differently to hot and cold conditions so that the inner body temperature remains more or less constant. Vasodilation and sweating are the primary modes by which humans attempt to lose excess body heat. The brain creates much heat through the countless reactions which occur. Even the process of thought creates heat. The head has a complex system of blood vessels, which keeps the brain from overheating by bringing blood to the thin skin on the head, allowing heat to escape. The effectiveness of these methods is influenced by the character of the climate and the degree to which the individual is acclimatized.

In hot conditions[edit]

A dog panting after exercise
  1. Eccrine sweat glands under the skin secrete sweat (a fluid containing mostly water with some dissolved ions), which travels up the sweat duct, through the sweat pore and onto the surface of the skin. This causes heat loss via evaporative cooling; however, a lot of essential water is lost.
  2. The hairs on the skin lie flat, preventing heat from being trapped by the layer of still air between the hairs. This is caused by tiny muscles under the surface of the skin called arrector pili muscles relaxing so that their attached hair follicles are not erect. These flat hairs increase the flow of air next to the skin increasing heat loss by convection. When environmental temperature is above core body temperature, sweating is the only physiological way for humans to lose heat.
  3. Arteriolar vasodilation occurs. The smooth muscle walls of the arterioles relax allowing increased blood flow through the artery. This redirects blood into the superficial capillaries in the skin increasing heat loss by convection and conduction.

Note: Most animals cannot sweat efficiently. Cats and dogs have sweat glands only on the pads of their feet. Horses and humans are two of the few animals capable of sweating. Many animals pant rather than sweat because the lungs have a large surface area and are highly vascularised. Air is inhaled, cooling the surface of the lungs and is then exhaled losing heat and some water vapour.

In hot and humid conditions[edit]

In general, humans appear physiologically well adapted to hot dry conditions.[12] However, effective thermoregulation is reduced in hot, humid environments such as the Red Sea and Persian Gulf (where moderately hot summer temperatures are accompanied by unusually high vapor pressures), tropical environments, and deep mines where the atmosphere can be water-saturated.[12][7] In hot-humid conditions, clothing can impede efficient evaporation.[8] In such environments, it helps to wear light clothing such as cotton, that is pervious to sweat but impervious to radiant heat from the sun. This minimizes the gaining of radiant heat, while allowing as much evaporation to occur as the environment will allow. Clothing such as plastic fabrics that are impermeable to sweat and thus do not facilitate heat loss through evaporation can actually contribute to heat stress.[11]

In cold conditions[edit]

  1. Sweat production is decreased.
  2. The minute muscles under the surface of the skin called erector pili muscles (attached to an individual hair follicle) contract (piloerection), lifting the hair follicle upright. This makes the hairs stand on end, which acts as an insulating layer, trapping heat. This is what also causes goose bumps since humans do not have very much hair and the contracted muscles can easily be seen.
  3. Arterioles carrying blood to superficial capillaries under the surface of the skin can shrink (constrict), thereby rerouting blood away from the skin and towards the warmer core of the body. This prevents blood from losing heat to the surroundings and also prevents the core temperature dropping further. This process is called vasoconstriction. It is impossible to prevent all heat loss from the blood, only to reduce it. In extremely cold conditions, excessive vasoconstriction leads to numbness and pale skin. Frostbite occurs only when water within the cells begins to freeze. This destroys the cell causing damage.
  4. Muscles can also receive messages from the thermo-regulatory center of the brain (the hypothalamus) to cause shivering. This increases heat production as respiration is an exothermic reaction in muscle cells. Shivering is more effective than exercise at producing heat because the animal remains still. This means that less heat is lost to the environment through convection. There are two types of shivering: low-intensity and high-intensity. During low-intensity shivering, animals shiver constantly at a low level for months during cold conditions. During high-intensity shivering, animals shiver violently for a relatively short time. Both processes consume energy, however high-intensity shivering uses glucose as a fuel source and low-intensity tends to use fats. This is a primary reason why animals store up food in the winter.[citation needed]
  5. Mitochondria can convert fat directly into heat energy, increasing the temperature of all cells in the body. Brown fat is specialized for this purpose, and is abundant in newborns and animals that hibernate.

The process explained above, in which the skin regulates body temperature is a part of thermoregulation. This is one aspect of homeostasis — the process by which the body regulates itself to keep internal conditions constant.

Related diseases and syndromes[edit]

Human heat output power[edit]

An average-size human will output from around 70 watts to 870 watts, depending on the amount of physical activity undertaken.[13]

In plants[edit]

Thermogenesis occurs in the flowers of many plants in the Araceae family as well as in cycad cones.[14] In addition, the Sacred lotus (Nelumbo nucifera) is able to thermoregulate itself,[15] remaining on average 20 °C (36 °F) above air temperature while flowering. Heat is produced by breaking down the starch that was stored in their roots,[16] which requires the consumption of oxygen at a rate approaching that of a flying hummingbird.[17]

One possible explanation for plant thermoregulation is to provide protection against cold temperature. For example, the skunk cabbage is not frost-resistant, yet it begins to grow and flower when there is still snow on the ground.[14] Another theory is that thermogenicity helps attract pollinators, which is borne out by observations that heat production is accompanied by the arrival of beetles or flies.[18]

Behavioral temperature regulation[edit]

Animals other than humans regulate and maintain their body temperature with physiological adjustments and behavior. Desert lizards are ectotherms and so unable to metabolically control their temperature but can do this by altering their location. They may do this by in the morning only raising their head from its burrow and then exposing their entire body. By basking in the sun, the lizard absorbs solar heat. It may also absorb heat by conduction from heated rocks that have stored radiant solar energy. To lower their temperature, lizards exhibit varied behaviors. Sand seas, or ergs, produce up to 136 F (57.7C), and the sand lizard will hold its feet up in the air to cool down, seek cooler objects with which to contact, find shade or return to their burrow. They also go to their burrows to avoid cooling when the sun goes down or the temperature falls.

Animals also engage in kleptothermy in which they share or even steal each other's body warmth. In endotherms such as bats[19] and birds (such as the mousebird[20] and emperor penguin[21]) it allows the sharing of body heat (particularly amongst juveniles). This allows the individuals to increase their thermal inertia (as with gigantothermy) and so reduce heat loss.[22] Some ectotherms share burrows of ectotherms. Other animals exploit termite mounds.[23][24]

Some animals living in cold environments maintain their body temperature by preventing heat loss. Their fur grows more densely to increase the amount of insulation. Some animals are regionally heterothermic and are able to allow their less insulated extremities to cool to temperatures much lower than their core temperature—nearly to 0 °C. This minimizes heat loss through less insulated body parts, like the legs, feet (or hooves), and nose.

An ostrich can keep its body temperature very constant, even though it can be very hot during the day and cold at night.

Hibernation, estivation, and daily torpor[edit]

To cope with limited food resources and low temperatures, some mammals hibernate during cold periods. To remain in "stasis" for long periods, these animals build up brown fat reserves and slow all body functions. True hibernators (e.g., groundhogs) keep their body temperatures low throughout hibernation whereas the core temperature of false hibernators (e.g., bears) varies; occasionally the animal may emerge from its den for brief periods. Some bats are true hibernators and rely upon a rapid, non-shivering thermogenesis of their brown fat deposit to bring them out of hibernation.

Estivation is similar to hibernation but usually occurs in hot periods to allow animals to avoid high temperatures and desiccation. Both terrestrial and aquatic invertebrate and vertebrates enter into estivation. Examples include Lady beetles (Coccinellidae),[25] North American desert tortoises, crocodiles, salamanders, cane toads,[26] and the Water-holding Frog[27]

Daily torpor occurs in small endotherms like bats and humming birds, which temporarily reduces their high metabolic rates to conserve energy.[28]

Variations in the temperature of human beings and some animals[edit]

Chart showing diurnal variation in body temperature, ranging from about 37.5 °C from 10 a.m. to 6 p.m., and falling to about 36.3 °C from 2 a.m. to 6 a.m.

Normal human temperature[edit]

Previously, average oral temperature for healthy adults had been considered 37.0 °C (98.6 °F), while normal ranges are 36.1 °C (97.0 °F) to 37.8 °C (100.0 °F). In Poland and Russia, the temperature had been measured axillary. 36.6 °C was considered "ideal" temperature in these countries, while normal ranges are 36 °C to 36.9 °C.

Recent studies suggest that the average temperature for healthy adults is 98.2 °F or 36.8 °C (same result in three different studies). Variations (one standard deviation) from three other studies are:

  • 36.4 - 37.1 °C (97.5 - 98.8 °F)
  • 36.3 - 37.1 °C (97.3 - 98.8 °F) for males, 36.5 - 37.3 °C (97.7 - 99.1 °F) for females
  • 36.6 - 37.3 °C (97.9 - 99.1 °F)[29]

Variations from thermometer placement[edit]

Temperature varies according to thermometer placement, with rectal temperature being 0.3-0.6 °C (0.5-1 °F) higher than oral temperature, while axillary temperature is 0.3-0.6 °C (0.5-1 °F) lower than oral temperature.[30] The average difference between oral and axillary temperatures of Indian children aged 6–12 was found to be only 0.1 °C (standard deviation 0.2 °C),[31] and the mean difference in Maltese children aged 4–14 between oral and axillary temperature was 0.56 °C, while the mean difference between rectal and axillary temperature for children under 4 years old was 0.38 °C.[32]

Variations associated with development[edit]

Of the lower warm-blooded animals, there are some that appear to be cold-blooded at birth. Kittens, rabbits, and puppies, if removed from their surroundings shortly after birth, lose their body heat until their temperature has fallen to within a few degrees of that of the surrounding air. But such animals are at birth blind, helpless, and in some cases furless. Animals that are born when in a condition of greater development can maintain a fairly constant body temperature. In strong, healthy human infants a day or two old, the temperature rises slightly when removed, but in that of weakly, ill-developed children it either remains stationary or falls. The cause of the variable temperature in infants and young immature animals is the imperfect development of the nervous regulating mechanism.

The average temperature falls slightly from infancy to puberty and again from puberty to middle age, but after that stage is passed the temperature begins to rise again, and by about the eightieth year is as high as in infancy.

Variations due to circadian rhythms[edit]

In humans, a diurnal variation has been observed dependent on the periods of rest and activity, lowest at 11 p.m. to 3 a.m. and peaking at 10 a.m. to 6 p.m. Monkeys also have a well-marked and regular diurnal variation of body temperature that follows periods of rest and activity, and is not dependent on the incidence of day and night; nocturnal monkeys reach their highest body temperature at night and lowest during the day. Sutherland Simpson and J.J. Galbraith observed that all nocturnal animals and birds - whose periods of rest and activity are naturally reversed through habit and not from outside interference - experience their highest temperature during the natural period of activity (night) and lowest during the period of rest (day). Those diurnal temperatures can be reversed by reversing their daily routine.[33]

In essence, the temperature curve of diurnal birds is similar to that of man and other homoeothermal animals, except that the maximum occurs earlier in the afternoon and the minimum earlier in the morning. Also, the curves obtained from rabbits, guinea pigs, and dogs were quite similar to those from man. These observations indicate that body temperature is partially regulated by circadian rhythms.

Variations due to women's menstrual cycles[edit]

During the follicular phase (which lasts from the first day of menstruation until the day of ovulation), the average basal body temperature in women ranges from 36.45 to 36.7 °C (97.6 to 98.1 °F). Within 24 hours of ovulation, women experience an elevation of 0.15 - 0.45 °C (0.2 - 0.9 °F) due to the increased metabolic rate caused by sharply elevated levels of progesterone. The basal body temperature ranges between 36.7 - 37.3°C (98.1 - 99.2°F) throughout the luteal phase, and drops down to pre-ovulatory levels within a few days of menstruation.[34] Women can chart this phenomenon to determine whether and when they are ovulating, so as to aid conception or contraception.

Variations due to fever[edit]

Fever is a regulated elevation of the set point of core temperature in the hypothalamus, caused by circulating pyrogens produced by the immune system. To the subject, a rise in core temperature due to fever may result in feeling cold in an environment where people without fever do not.

Variations due to biofeedback[edit]

Some monks are known to practice Tummo, biofeedback meditation techniques, that allow them to raise their body temperatures substantially.[35]

Variations due to other factors[edit]

In Simpson's & Galbraith's work, the mean temperature of the female was higher than that of the male in all the species examined whose sex had been determined.

Meals sometimes cause a slight elevation, sometimes a slight depression—alcohol seems always to produce a fall. Exercise and variations of external temperature within ordinary limits cause very slight change, as there are many compensating influences at work, which are discussed later. The core temperature of those living in the tropics is within a similar range to those dwelling in the Arctic regions.

Low body temperature increases lifespan[edit]

It was long theorised that low body temperature may prolong life. On November 2006, a team of scientists from the Scripps Research Institute reported that transgenic mice that had body temperature 0.3-0.5 C lower than normal mice (due to overexpressing the uncoupling protein 2 in hypocretin neurons (Hcrt-UCP2), which elevated hypothalamic temperature, thus forcing the hypothalamus to lower body temperature) indeed lived longer than normal mice. The lifespan was 12% longer for males and 20% longer for females. Mice were allowed to eat as much as they wanted.[36][37][38] The effects of such a genetic change in body temperature on longevity is harder to study in humans. The UCP2 genetic alleles seen in humans so far are associated with obesity[39]

Limits compatible with life[edit]

There are limits both of heat and cold that an endothermic animal can bear and other far wider limits that an ectothermic animal may endure and yet live. The effect of too extreme a cold is to decrease metabolism, and hence to lessen the production of heat. Both catabolic and anabolic pathways share in this metabolic depression, and, though less energy is used up, still less energy is generated. The effects of this diminished metabolism become telling on the central nervous system first, especially the brain and those parts concerning consciousness;[40] both heart rate and respiration rate decrease; judgment becomes impaired as drowsiness supervenes, becoming steadily deeper until the individual loses consciousness; without medical intervention, death by hypothermia quickly follows. Occasionally, however, convulsions may set in towards the end, and death is caused by asphyxia.[40]

In experiments on cats performed by Sutherland Simpson and Percy T. Herring, the animals were unable to survive when rectal temperature fell below 16°C.[40] At this low temperature, respiration became increasingly feeble; heart-impulse usually continued after respiration had ceased, the beats becoming very irregular, appearing to cease, then beginning again. Death appeared to be mainly due to asphyxia, and the only certain sign that it had taken place was the loss of knee-jerks.

However, too high a temperature speeds up the metabolism of different tissues to such a rate that their metabolic capital is soon exhausted. Blood that is too warm produces dyspnea by exhausting the metabolic capital of the respiratory centre;[citation needed] heart rate is increased; the beats then become arrhythmic and eventually cease. The central nervous system is also profoundly affected by hyperthermia and delirium, and convulsions may set in. Consciousness may also be lost, propelling the person into a comatose condition. These changes can sometimes also be observed in patients suffering from an acute fever.[citation needed] The lower limit of temperature that humans can endure depends on many factors, but no one can survive a temperature of 45 °C (113 °F) or above for very long.[citation needed] Mammalian muscle becomes rigid with heat rigor at about 50°C, with the sudden rigidity of the whole body rendering life impossible.

H.M. Vernon has done work on the death temperature and paralysis temperature (temperature of heat rigor) of various animals. He found that species of the same class showed very similar temperature values, those from the Amphibia examined being 38.5°C, Fish 39°C, Reptilia 45°C, and various Molluscs 46°C.[citation needed] Also, in the case of pelagic animals, he showed a relation between death temperature and the quantity of solid constituents of the body. In higher animals, however, his experiments tend to show that there is greater variation in both the chemical and physical characteristics of the protoplasm and, hence, greater variation in the extreme temperature compatible with life.

Arthropoda[edit]

The maximum temperatures tolerated by certain thermophilic arthropods exceeds the lethal temperatures for most mammals, birds, reptiles, fish and amphibians.[41]

The most heat-resistant insects are three genera of desert ants recorded from three different parts of the world. The ants have developed a lifestyle of scavenging for short durations during the hottest hours of the day, in excess of 50 °C (122 °F) and often approaching 70 °C (158 °F), for the carcasses of insects and other forms of life which have succumbed to heat stress.[42]

In April 2014, the South Californian mite Paratarsotomus macropalpis has been recorded as the world's fastest land animal relative to body length, at a speed of 322 body lengths per second. Besides the unusually great speed of the mites, the researchers were surprised to find the mites running at such speeds on concrete at temperatures up to 60 °C (140 °F), which is significant because this temperature is well above the lethal limit for the majority of animal species. In addition, the mites are able to stop and change direction very quickly.[41]

See also[edit]

References[edit]

  1. ^ "Global Warming: Future Temperatures Could Exceed Livable Limits, Researchers Find". 
  2. ^ a b Romanovsky AA. (2007). Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol. 292(1):R37-46. doi:10.1152/ajpregu.00668.2006 PMID 17008453
  3. ^ Swan, K. G.; R. E. Henshaw (March 1973). "Lumbar sympathectomy and cold acclimatization by the arctic wolf". Analysis of Surgery 177 (3). pp. 286–292. doi:10.1097/00000658-197303000-00008. PMC 1355529. PMID 4692116. 
  4. ^ Adaptations for an Aquatic Environment. SeaWorld/Busch Gardens Animal Information Database, 2002. Last accessed November 27, 2006.
  5. ^ Introduction to Penguins. Mike Bingham, International Penguin Conservation Work Group. Last accessed November 27, 2006.
  6. ^ Guyton, A.C., & Hall, J.E. (2006). Textbook of Medical Physiology (11th ed.). Philadelphia: Elsevier Saunders. p. 890. 
  7. ^ a b Harrison, G.A., Tanner, J.M., Pilbeam, D.R., & Baker, P.T. (1988) Human Biology: An introduction to human evolution, variation, growth, and adaptability. (3rd ed). Oxford: Oxford University Press
  8. ^ a b Weiss, M.L., & Mann, A.E. (1985) Human Biology and Behaviour: An anthropological perspective". (4th ed). Boston: Little Brown
  9. ^ Guyton & Hall (2006), pp.891-892
  10. ^ Wilmore, Jack H., & Costill, David L. (1999). Physiology of sport and exercise (2nd ed). Champaign, Illinois: Human Kinetics.
  11. ^ a b Guyton, Arthur C. (1976) Textbook of Medical Physiology. (5th ed). Philadelphia: W.B. Saunders
  12. ^ a b Jones, S., Martin, R., & Pilbeam, D. (1994) The Cambridge Encyclopedia of Human Evolution". Cambridge: Cambridge University Press
  13. ^ Binggeli, Corky (2009-06-09). Building Systems for Interior Designers. ISBN 9780470228470. 
  14. ^ a b Minorsky, Peter V. (May 2003). "The Hot and the Classic". Plant Physiol 132 (1). pp. 25–26. doi:10.1104/pp.900071. PMC 1540311. PMID 12765187. 
  15. ^ Plants Thermoregulation. Google. Archived from the original on 2012-05-07. Retrieved 24 October 2013. 
  16. ^ Holdrege, Craig (2000). "Skunk Cabbage (Symplocarpus foetidus)". The Nature Institute. pp. 12–18. 
  17. ^ Kenneth A. Nagy, Daniel K. Odell, and Roger S. Seymour (December 1972). "Temperature Regulation by the Inflorescence of Philodendron". Science 178 (4066). pp. 1195–1197. doi:10.1126/science.178.4066.1195. PMID 17748981. 
  18. ^ Gibernau, Marc; Barabé, Denis (2000). "Thermogenesis in three Philodendron species (Araceae) of French Guiana". Canadian Journal of Botany 78 (5). p. 685. doi:10.1139/cjb-78-5-685. 
  19. ^ Arends A, Bonaccorso FJ, Genoud M. (1995). Basal rates of metabolism of nectarivorous bats (Phyllostomidae) from a semiarid thorn forest in Venezuela. J. Mammal. 76, 947–956. doi:10.2307/1382765
  20. ^ Brown, C. R.; Foster, G. G. (1992). "The thermal and energetic significance of clustering in the speckled mousebird, Colius striatus". Journal of Comparative Physiology B 162 (7): 658–664. doi:10.1007/BF00296648.  edit
  21. ^ Ancel, A, Visser, H, Handrich, Y, Masman, D. Le Maho Y., Maho, Yvon Le (1997). "Energy saving in huddling penguins". Nature 385 (6614). pp. 304–305. doi:10.1038/385304a0. 
  22. ^ Canals M, Rosenmann M, Bozinovic F. (1989). Energetics and geometry of huddling in small mammals. J. Theor. Biol. 141, 181–189. doi:10.1016/S0022-5193 (89)80016-5
  23. ^ Ehmann H, Swan G, Swan G, Smith B. (1991) Nesting, egg incubation and hatching by the heath monitor Varanus rosenbergi in a termite mound. Herpetofauna 21, 17–24.
  24. ^ Knapp CR, Owens AK. (2008). Nesting Behavior and the Use of Termitaria by the Andros Iguana (Cyclura Cychlura Cychlura). Journal of Herpetology 42(1):46-53. doi:10.1670/07-098.1
  25. ^ Kenneth S. Hagen (1962). "Biology and ecology of predaceous Coccinellidae". Annual Review of Entomology 7: 289–326. doi:10.1146/annurev.en.07.010162.001445. 
  26. ^ Bob Moore (September 29, 2009). "Estivation: The Survial Siesta". Audubon Guides. Retrieved October 24, 2013. 
  27. ^ F.H. Pough, R.M. Andrews, J.E. Cadle, M.L. Crump, A.H. Savitzky and K.D. Wells (2001). Herpetology, second edition. Upper Saddle River, New Jersey: Prentice Hall. 
  28. ^ Starr, Cecie (2005). Biology: Concepts and Applications. Thomson Brooks/Cole. p. 639. ISBN 0-534-46226-X. 
  29. ^ Wong, Lena; Forsberg, C; Wahren, LK (2005). "Temperature of a Healthy Human (Body Temperature)". Scandinavian Journal of Caring Sciences, The Physics Factbook 16 (2). pp. 122–8. doi:10.1046/j.1471-6712.2002.00069.x. PMID 12000664. Retrieved 24 October 2013. 
  30. ^ Rectal, ear, oral, and axillary temperature comparison. Yahoo Health. 
  31. ^ Deepti Chaturvedi, K.Y. Vilhekar, Pushpa Chaturvedi, M.S. Bharambe (June 17, 2004). "Comparison of Axillary Temperature with Rectal or Oral Temperature and Determination of Optimum Placement Time in Children". Indian Pediatrics 41 (6). pp. 600–603. PMID 15235167. 
  32. ^ Quintana, E.C. (June 2004). "How reliable is axillary temperature measurement?". Annuals of Emergency Medicine 43 (6). pp. 797–798. doi:10.1016/j.annemergmed.2004.03.010. 
  33. ^ Simpson, Sutherland; Galbraith, J.J. (1905). "An investigation into the diurnal variation of the body temperature of nocturnal and other birds, and a few mammals". The Journal of Physiology Online. 
  34. ^ Swedan, Nadya Gabriele (2001). Women's Sports Medicine and Rehabilitation. Lippincott Williams & Wilkins. p. 149. ISBN 0-8342-1731-7. 
  35. ^ Cromie, William J. (2002). Meditation changes temperatures: Mind controls body in extreme experiments. Harvard Gazette. 
  36. ^ Transgenic Mice with a Reduced Core Body Temperature Have an Increased Life Span, by Bruno Conti et al. Science, 3, November 2006
  37. ^ Reduced Body Temperature Extends Lifespan, Study Finds
  38. ^ Bee cool, live long
  39. ^ "OMIM entry on human UnCoupling Protein 2 (UCP2)". 
  40. ^ a b c Simpson S, Herring PT (1905-05-09). "The effect of cold narcosis on reflex action in warm-blooded animals". J Physiol. 32 (5 Suppl 8): 305–11. PMC 1465681. PMID 16992777. 
  41. ^ a b Federation of American Societies for Experimental Biology (FASEB) (27 April 2014). "Mite sets new record as world's fastest land animal". Featured Research. ScienceDaily. Retrieved 28 April 2014. 
  42. ^ Sherwood, Van (1 May 1996). "Chapter 21: Most heat tolerant". Book of Insect Records. University of Florida. Retrieved 30 April 2014. 

Further reading[edit]

External links[edit]

Public Domain This article incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911). Encyclopædia Britannica (11th ed.). Cambridge University Press.