Bohr magneton

From Wikipedia, the free encyclopedia
Jump to: navigation, search
The value of Bohr magneton
system of units value unit
SI[1] 9.27400968(20)×10−24 J·T−1
CGS[2] 9.27400968(20)×10−21 Erg·G−1
eV[3] 5.7883818066(38)×10−5 eV·T−1
atomic units 12 none

In atomic physics, the Bohr magneton (symbol μB), also known as the Bohr-Procopiu magneton is a physical constant and the natural unit for expressing an electron magnetic dipole moment. The Bohr magneton is defined in SI units by

\mu_\mathrm{B} = \frac{e \hbar}{2 m_\mathrm{e}}

and in Gaussian CGS units by

\mu_\mathrm{B} = \frac{e \hbar}{2 m_\mathrm{e} c}


e is the elementary charge,
ħ is the reduced Planck constant,
me is the electron rest mass and
c is the speed of light.

The magnitude of an electron's spin magnetic moment is approximately one Bohr magneton.[4]


The idea of elementary magnets is due to Walter Ritz (1907) and Pierre Weiss. Already before the Rutherford model of atomic structure, several theorists commented that the magneton should involve Planck's constant h.[5] By postulating that the ratio of electron kinetic energy to orbital frequency should be equal to h, Richard Gans computed a value that was twice as large as the Bohr magneton in September 1911.[6] At the First Solvay Conference in November that year, Paul Langevin obtained a submultiple.[7] The Romanian physicist Ştefan Procopiu obtained for the first time its value in 1911;[8][9] the value is referred to as the "Bohr–Procopiu magneton" in Romanian scientific literature.[10]

The Bohr magneton is the magnitude of the magnetic dipole moment of an orbiting electron with an orbital angular momentum of one ħ. According to the Bohr model, this is the ground state, i.e. the state of lowest possible energy.[11] In the summer of 1913, this value was naturally obtained by the Danish physicist Niels Bohr as a consequence of his atom model,[6][12] and also published independently by Procopiu using directly Max Planck's quantum theory.[9] In 1920, Wolfgang Pauli gave the Bohr magneton its name in an article where he contrasted it with the magneton of the experimentalists which he called the Weiss magneton.[5]

See also[edit]


  1. ^ "CODATA value: Bohr magneton". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2012-07-09. 
  2. ^ Robert C. O'Handley (2000). Modern magnetic materials: principles and applications. John Wiley & Sons. p. 83. ISBN 0-471-15566-7.  (value was slightly modified to reflect 2010 CODATA change)
  3. ^ "CODATA value: Bohr magneton in eV/T". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2012-07-09. 
  4. ^ Anant S. Mahajan, Abbas A. Rangwala (1989). Electricity and Magnetism. McGraw-Hill. p. 419. ISBN 978-0-07-460225-6. 
  5. ^ a b Stephen T. Keith and Pierre Quédec (1992). "Magnetism and Magnetic Materials: The Magneton". Out of the Crystal Maze. pp. 384–394. ISBN 978-0-19-505329-6. 
  6. ^ a b John Heilbron; Thomas Kuhn (1969). "The genesis of the Bohr atom". Historical Studies in the Physical Sciences 1: 232. 
  7. ^ Paul Langevin (1911). "La théorie cinétique du magnétisme et les magnétons". La théorie du rayonnement et les quanta: Rapports et discussions de la réunion tenue à Bruxelles, du 30 octobre au 3 novembre 1911, sous les auspices de M. E. Solvay. p. 403. 
  8. ^ Ştefan Procopiu (1911–1913). "Sur les éléments d’énergie". Annales scientifiques de l'Université de Jassy 7: 280. 
  9. ^ a b Ştefan Procopiu (1913). "Determining the Molecular Magnetic Moment by M. Planck's Quantum Theory". Bulletin scientifique de l’Académie roumaine de sciences 1: 151. 
  10. ^ "Stefan Procopiu (1890-1972)". Stefan Procopiu Science and Technique Museum. Retrieved 2010-11-03. 
  11. ^ Marcelo Alonso, Edward Finn (1992). Physics. Addison-Wesley. ISBN 978-0-201-56518-8. 
  12. ^ Abraham Pais (1991). Niels Bohr's Times, in physics, philosophy, and politics. Clarendon Press. ISBN 0-19-852048-4.