Bowyer

From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about the occupation. For other uses, see Bowyer (disambiguation).
Bowyer
Occupation
Occupation type
Vocation
Activity sectors
Recreation

A bowyer is someone who makes bows. Bows are used for hunting and for archery. The development of gunpowder and muskets slowly led to the replacement of bows as weapons of war which decreased the importance of bowyers. Someone who makes arrows is a fletcher.

Freshly cut wood split into bow staves.

History[edit]

Historically, a huge variety of bows have been produced for food gathering, warfare, and recreation. Who created these bows depended mainly on the type of bow being produced, but also on the quantity required. The skills required tend to divide traditional bowyers into two groups:

Self bowyers[edit]

In clans or social groups that used wooden self bows (bows made entirely from one piece of wood) bows would sometimes be crafted by the individual user; however, even with fairly simple bow designs it was often easier to rely upon a few skilled bowyers within the group. By working in groups more could be accomplished. In medieval England, for example, professional bowyers produced thousands of bows required for that country’s military. These bowyers could reportedly make an English longbow in as little as two hours. Wooden selfbows normally take from 5–15 hours of work depending on the skill of the bowyer and the challenges set by the piece of wood. Modern amateurs find it satisfying to make functional self bows with beginner's skills and few tools.

Composite bowyers[edit]

Cultures that used composite bows (bows made of several materials, often horn, wood, and sinew) had to rely on skilled craftsmen. Composite bows could be made relatively short, heavily recurved, and highly effective but the constituent materials had to be put under enormous stress and the bow’s limbs needed to be perfectly aligned. These demands required experienced bowyers who were willing to spend a great deal of time crafting their weapons. Cultures such as the Mongols made effective military use of powerful composite bows for millennia; the limited records indicate that only a minority of men in these cultures ever made bows. The early modern Turkish bowyers are widely thought to have been the most skilled. Because the glue used to apply each lamination was allowed to dry for months, Turkish flight bows took up to a year to produce. The short, very recurved, sinew-horn-wood composite bows were exquisitely crafted and pushed the natural materials to their limits. In the 16th century one such Turkish flight bow set the record for the longest shot, 846 metres (925 yards), a record that stood until the 20th century and the application of modern material science.

Making a bow[edit]

The most important part of crafting a bow is ensuring that the materials used are not strained beyond their breaking point. Due to the large amount of energy stored in a drawn bow, failures are often spectacular — often described as explosions because of the loud crack and flying debris. If a bow is being made from wood or a combination of natural materials (often called a primitive or traditional bow) careful attention must be paid to the selected materials. There are often natural twists, knots, bends or other variations that must be taken into account and worked with to ensure that the bow will not fracture at any point along its length. Serious injury can result from bow failure or if the bow string breaks. Due to this, traditional bows must be made individually.

They are usually tested by supporting them on a block on a wall or post and pulling the string downwards via a rope and pulley (This contraption is called a tiller... (a simple beam of wood with notches cut in it allowing the string to be drawn back into the notches by degrees will also suffice) This allows the curve of the bow to be seen as it is drawn back. Wood is carefully removed from the belly (the side facing the archer) to give the correct curve, this process is known as tillering.

Wooden bows are often made with dense woods such as Osage Orange, Yew, Oak, Maple, Elm, Ash and Ipe.

Fibreglass bows[edit]

Glass bowyers who create fibreglass laminated bows, bows consisting of wood sandwiched by fibreglass layers, can create somewhat more standardized bows as fibreglass, not the wood, is the load-bearing component and keeps the bow from breaking. The wood in a fibreglass bow serves the purposes of separating the fibreglass laminates, and of resisting shear. Most of the stress of a bent flat spring occurs in the surface layers, and the further apart they are, the greater the stress on them. A solid fibreglass bow tends to be heavy, and heavy bow limbs shoot more slowly, other things being equal, than light ones. The limbs of a laminated bow can be lightened by the use of lighter materials such as wood. This wood must, however, be sufficiently strong to withstand the intense stress of shear, caused by the backing strip (that nearest the target) being under tension and the belly strip (that nearest the archer) being under compression. American rock maple has been extensively used for center laminations, strips being machined for the purpose so that the thickness and therefore the strength of the resulting limb can be predicted with reasonable accuracy.

The wood must provide a perfect gluing surface and needs to be completely free of grease for most synthetic glues. Amateur bowyers clean the wood with acetone prior to gluing. Amateurs often use epoxy resins; those manufactured specifically to resist shear are best for the purpose although it is essential to follow the exact proportions given by the manufacturers, by measuring quantities with a chemical balance if necessary.

Failures of fibreglass bows commercially produced are not unknown, and careful inspection of the broken limbs usually indicates that the bow has failed in shear. The greatest care must be taken to feather any wooden inserts, especially at the handle riser (the thickened part in the middle of the bow) and less importantly at the nocks (and axle mounts, in wheeled compound bows) as the shear stress seems to need a weak point to start a split. Feathering of the wood in between the fibreglass laminates must be accompanied by perfectly even pressure over the whole width of the limb, lest the centre part pucker up under clamping pressure and form either a void or a weakness filled only with glue.

Common practice is to bind a bow in many strips of rubber cut from car or bicycle inner tubes to apply great and even pressure, and leave the glue to cure for several days before unwrapping. Binding in this way tends to put greatest pressure on the edges of the laminates, encouraging puckering, and weak thickening, of the middle strip of the bow limb. This is avoided by putting strips of soft, flexible material such as thin hardboard, above the top laminate before the rubber binding is applied. The strips are made about 12mm narrower than the bow limb, and, concentrating the pressure down the middle of the limb, greatly assist in obtaining a flat section during the glue curing time. These strips are discarded after the bow is released from the bow form.

Assuming a bow will not fail during shooting, other factors such as efficiency, aesthetics, and noise during shooting can all be important. How these factors affect the bows' design and construction depends on the purpose of the bow and preferences of the user.

Bowyers in the United States[edit]

In the United States, Will and Maurice Thompson may have made some of their own bows, but many American bowyers were inspired by Art Young, Dr. Saxton Pope, and Will Compton. These included Chester Stevenson, Glenn St. Charles, Howard Hill, Ben Pearson and Fred Bear. Following the publication of The Traditional Bowyer's Bibles in the 1990s, there has been a resurgence of traditional bow making in the United States and other English-speaking countries. Modern leaders in the field include among others Jay St. Charles, the late Jay Massey, Tim Baker, Paul Comstock, John Strunk and Jim Hamm.

Sources and recommended reading[edit]

See also[edit]

References[edit]