Bridgman–Stockbarger technique

From Wikipedia, the free encyclopedia
  (Redirected from Bridgman technique)
Jump to: navigation, search
Crystallization
Snow crystallization in Akureyri 2005-02-26 19-03-37.jpeg
Concepts
Crystallization · Crystal growth
Recrystallization · Seed crystal
Protocrystalline · Single crystal
Fundamentals
Nucleation · Crystal
Crystal structure · Solid
Methods and technology
Boules · Bridgman-Stockbarger
Czochralski process
Frac. crystalliz. · Frac. freezing
Hydroth. synthesis · LHPG · Iodide process

The Bridgman–Stockbarger technique is named after Harvard physicist Percy Williams Bridgman and MIT physicist Donald C. Stockbarger (1895–1952). They are two similar methods primarily used for growing single crystal ingots (boules), but which can be used for solidifying polycrystalline ingots as well.

The methods involve heating polycrystalline material above its melting point and slowly cooling it from one end of its container, where a seed crystal is located. A single crystal of the same crystallographic orientation as the seed material is grown on the seed and is progressively formed along the length of the container. The process can be carried out in a horizontal or vertical geometry.

The Bridgman method is a popular way of producing certain semiconductor crystals such as gallium arsenide, for which the Czochralski process is more difficult.

The difference between the Bridgman[1] technique and Stockbarger[2] technique is subtle: While both methods utilize a temperature gradient and a moving crucible, the Bridgman technique utilizes the relatively uncontrolled gradient produced at the exit of the furnace; the Stockbarger technique introduces a baffle, or shelf, separating two coupled furnaces with temperatures above and below the freezing point. Stockbarger's modification of the Bridgman technique allows for better control over the temperature gradient at the melt/crystal interface.

When seed crystals are not employed as described above, polycrystalline ingots can be produced from a feedstock consisting of rods, chunks, or any irregularly shaped pieces once they are melted and allowed to re-solidify. The resultant microstructures of the ingots so obtained are characteristic of directionally solidified metals and alloys with their aligned grains.

See also[edit]

References[edit]

  1. ^ Bridgman, Percy W. (1925). . "Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin". Proceedings of the American Academy of Arts and Sciences 60 (6): 305–383. doi:10.2307/25130058. 
  2. ^ Stockbarger, Donald C. (1936). "The Production of Large Single Crystals of Lithium Fluoride". Review of Scientific Instruments 7 (3): 133–136. doi:10.1063/1.1752094.