CCS (gene)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Copper chaperone for superoxide dismutase
Protein CCS PDB 1do5.png
PDB rendering based on 1do5.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols CCS ; MGC138260
External IDs OMIM603864 MGI1333783 HomoloGene3762 GeneCards: CCS Gene
RNA expression pattern
PBB GE CCS 203522 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 9973 12460
Ensembl ENSG00000173992 ENSMUSG00000034108
UniProt O14618 Q9WU84
RefSeq (mRNA) NM_005125 NM_016892
RefSeq (protein) NP_005116 NP_058588
Location (UCSC) Chr 11:
66.36 – 66.37 Mb
Chr 19:
4.83 – 4.84 Mb
PubMed search [1] [2]

Copper chaperone for superoxide dismutase is a metalloprotein that in humans is encoded by the CCS gene.[1][2]

Function[edit]

Copper chaperone for superoxide dismutase specifically delivers Cu to copper/zinc superoxide dismutase and may activate copper/zinc superoxide dismutase through direct insertion of the Cu cofactor.[2]

Interactions[edit]

CCS (gene) has been shown to interact with SOD1[3] and APBA1.[4]

References[edit]

  1. ^ Culotta V, Klomp L, Strain J, Casareno R, Krems B, Gitlin J (1997). "The copper chaperone for superoxide dismutase". J. Biol. Chem. 272 (38): 23469–72. doi:10.1074/jbc.272.38.23469. PMID 9295278. 
  2. ^ a b "Entrez Gene: CCS copper chaperone for superoxide dismutase". 
  3. ^ Casareno R, Waggoner D, Gitlin J (1998). "The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase". J. Biol. Chem. 273 (37): 23625–8. doi:10.1074/jbc.273.37.23625. PMID 9726962. 
  4. ^ McLoughlin D, Standen C, Lau K, Ackerley S, Bartnikas T, Gitlin J et al. (2001). "The neuronal adaptor protein X11alpha interacts with the copper chaperone for SOD1 and regulates SOD1 activity". J. Biol. Chem. 276 (12): 9303–7. doi:10.1074/jbc.M010023200. PMID 11115513. 

Further reading[edit]

  • Casareno R, Waggoner D, Gitlin J (1998). "The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase". J. Biol. Chem. 273 (37): 23625–8. doi:10.1074/jbc.273.37.23625. PMID 9726962. 
  • Rothstein J, Dykes-Hoberg M, Corson L, Becker M, Cleveland D, Price D et al. (1999). "The copper chaperone CCS is abundant in neurons and astrocytes in human and rodent brain". J. Neurochem. 72 (1): 422–9. doi:10.1046/j.1471-4159.1999.0720422.x. PMID 9886096. 
  • Rae T, Schmidt P, Pufahl R, Culotta V, O'Halloran T (1999). "Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase". Science 284 (5415): 805–8. doi:10.1126/science.284.5415.805. PMID 10221913. 
  • Lamb A, Wernimont A, Pufahl R, O'Halloran T, Rosenzweig A (2000). "Crystal structure of the second domain of the human copper chaperone for superoxide dismutase". Biochemistry 39 (7): 1589–95. doi:10.1021/bi992822i. PMID 10677207. 
  • Moore S, Chen M, Cox D (2000). "Cloning and mapping of murine superoxide dismutase copper chaperone (Ccsd) and mapping of the human ortholog". Cytogenet. Cell Genet. 88 (1-2): 35–7. doi:10.1159/000015480. PMID 10773661. 
  • Bartnikas T, Waggoner D, Casareno R, Gaedigk R, White R, Gitlin J (2000). "Chromosomal localization of CCS, the copper chaperone for Cu/Zn superoxide dismutase". Mamm. Genome 11 (5): 409–11. doi:10.1007/s003350010078. PMID 10790544. 
  • Rae T, Torres A, Pufahl R, O'Halloran T (2001). "Mechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS". J. Biol. Chem. 276 (7): 5166–76. doi:10.1074/jbc.M008005200. PMID 11018045. 
  • McLoughlin D, Standen C, Lau K, Ackerley S, Bartnikas T, Gitlin J et al. (2001). "The neuronal adaptor protein X11alpha interacts with the copper chaperone for SOD1 and regulates SOD1 activity". J. Biol. Chem. 276 (12): 9303–7. doi:10.1074/jbc.M010023200. PMID 11115513. 
  • Silahtaroglu A, Brondum-Nielsen K, Gredal O, Werdelin L, Panas M, Petersen M et al. (2002). "Human CCS gene: genomic organization and exclusion as a candidate for amyotrophic lateral sclerosis (ALS)". BMC Genet. 3: 5. doi:10.1186/1471-2156-3-5. PMC 107843. PMID 11991808. 
  • Bertinato J, L'Abbé M (2003). "Copper modulates the degradation of copper chaperone for Cu,Zn superoxide dismutase by the 26 S proteosome". J. Biol. Chem. 278 (37): 35071–8. doi:10.1074/jbc.M302242200. PMID 12832419. 
  • Silahtaroglu A, Jensen L, Harboe T, Horn P, Bendixen C, Tommerup N et al. (2004). "Sequencing and mapping of the porcine CCS gene". Anim. Genet. 35 (4): 353–4. doi:10.1111/j.1365-2052.2004.01150.x. PMID 15265083. 
  • Jin J, Smith F, Stark C, Wells C, Fawcett J, Kulkarni S et al. (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Curr. Biol. 14 (16): 1436–50. doi:10.1016/j.cub.2004.07.051. PMID 15324660. 
  • Stasser J, Eisses J, Barry A, Kaplan J, Blackburn N (2005). "Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface". Biochemistry 44 (9): 3143–52. doi:10.1021/bi0478392. PMID 15736924. 
  • Duquesne A, Ruijter M, Brouwer J, Drijfhout J, Nabuurs S, Spronk C et al. (2005). "Solution structure of the second PDZ domain of the neuronal adaptor X11alpha and its interaction with the C-terminal peptide of the human copper chaperone for superoxide dismutase". J. Biomol. NMR 32 (3): 209–18. doi:10.1007/s10858-005-7333-1. PMID 16132821. 
  • Caruano-Yzermans A, Bartnikas T, Gitlin J (2006). "Mechanisms of the copper-dependent turnover of the copper chaperone for superoxide dismutase". J. Biol. Chem. 281 (19): 13581–7. doi:10.1074/jbc.M601580200. PMID 16531609.