Compton Gamma Ray Observatory

From Wikipedia, the free encyclopedia
  (Redirected from CGRO)
Jump to: navigation, search
Compton Gamma Ray Observatory
Cartoon CGRO.jpg
General information
NSSDC ID 1991-027B
Organization NASA
Major contractors TRW
Launch date 5 April 1991, 14:22:45 (1991-04-05UTC14:22:45Z) UTC
Launch site Kennedy Space Center LC-39B, Florida, U.S.
Launch vehicle Space Shuttle Atlantis (STS-37)
Mission length 9 years, 2 months
Deorbited 4 June 2000 23:29:55 UTC
Mass 17,000 kg (37,000 lb)
Type of orbit Geocentric
Orbit height 450 km (280 mi)
Orbit period 90 min (1.5 h)
Telescope style Scintillation detectors
Wavelength Gamma
Diameter N/A
Collecting area Varied by instrument
Focal length N/A
Instruments
BATSE all-sky monitor
OSSE pointed detectors
COMPTEL imaging telescope
EGRET wide field telescope
Website NASA Compton Gamma Ray Observatory
Specifications
eccentricity 0.006998158525675535
orbital inclination 28.4610°
periapsis 237 kilometres (147 mi)
apoapsis 468 kilometres (291 mi)
right ascension of ascending node 68.6827°
argument of perigee 190.3289°
revolutions per day 15.72202183
mean anomaly at epoch 169.3770°
orbit number at epoch 39141
power 2.000 watts

The Compton Gamma Ray Observatory (CGRO) was a space observatory detecting light from 20 KeV to 30 GeV in Earth orbit from 1991 to 2000. It featured four main telescopes in one spacecraft, covering X-rays and gamma rays, including various specialized sub-instruments and detectors. Following 14 years of effort, the observatory was launched from Space Shuttle Atlantis during STS-37 on April 5, 1991, and operated until its deorbit on June 4, 2000.[1] It was deployed in low earth orbit at 450 km (280 mi) to avoid the Van Allen radiation belt. It was the heaviest astrophysical payload ever flown at that time at 17,000 kilograms (37,000 lb).

Costing $617 million,[2] the CGRO was part of NASA's "Great Observatories" series, along with the Hubble Space Telescope, the Chandra X-ray Observatory, and the Spitzer Space Telescope.[3] It was the second of the series to be launched into space, following the Hubble Space Telescope. CGRO was named after Arthur Holly Compton (Washington University in St. Louis), Nobel prize winner, for work involved with gamma ray physics. CGRO was built by TRW (now Northrop Grumman Aerospace Systems) in Redondo Beach, California. CGRO was an international collaboration and additional contributions came from the European Space Agency and various universities, as well as the U.S. Naval Research Laboratory.

Instruments[edit]

CGRO carried a complement of four instruments that covered an unprecedented six decades of the electromagnetic spectrum, from 20 keV to 30 GeV (from 0.02 MeV to 30000 MeV). In order of increasing spectral energy coverage:

BATSE[edit]

  • The Burst and Transient Source Experiment, (BATSE) by NASA's Marshall Space Flight Center searched the sky for gamma ray bursts (20 to >600 keV) and conducted full sky surveys for long-lived sources. It consisted of eight identical detector modules, one at each of the satellite's corners (left, right; front and back; top and bottom). Each module consisted of both a NaI(Tl) Large Area Detector (LAD) covering the 20 keV to ~2 MeV range, 50.48 cm in dia by 1.27 cm thick, and a 12.7 cm dia by 7.62 cm thick NaI Spectroscopy Detector, which extended the upper energy range to 8 MeV, all surrounded by a plastic scintillator in active anti-coincidence to veto the large background rates due to cosmic rays and trapped radiation. Sudden increases in the LAD rates triggered a high-speed data storage mode, the details of the burst being read out to telemetry later. Bursts were typically detected at rates of roughly one per day over the 9-year CGRO mission. A strong burst could result in the observation of many thousands of gamma rays within a time interval ranging from ~0.1 s up to about 100 s.
The Compton Gamma Ray Observatory during deployment from Space Shuttle Atlantis

OSSE[edit]

  • The Oriented Scintillation Spectrometer Experiment, (OSSE), by the Naval Research Laboratory detected gamma rays entering the field of view of any of four detector modules, which could be pointed individually, and were effective in the 0.05 to 10 MeV range. Each detector had a central scintillation spectrometer crystal of NaI(Tl) 12 in (303 mm) in diameter, by 4 in (102 mm) thick, optically coupled at the rear to a 3 in (76.2 mm) thick CsI(Na) crystal of similar diameter, viewed by seven photomultiplier tubes, operated as a phoswich: i.e., particle and gamma-ray events from the rear produced slow-rise time (~1 μs) pulses, which could be electronically distinguished from pure NaI events from the front, which produced faster (~0.25 μs) pulses. Thus the CsI backing crystal acted as an active anticoncidence shield, vetoing events from the rear. A further barrel-shaped CsI shield, also in electronic anticoincidence, surrounded the central detector on the sides and provided coarse collimation, rejecting gamma rays and charged particles from the sides or most of the forward field-of-view (FOV). A finder level of angular collimation was provided by a tungston slat collimator grid within the outer CsI barrel, which collimated the response to a 3.8° x 11.4° FWHM rectangular FOV. A plastic scintillator across the front of each module vetoed charged particles entering from the front. The four detectors were typically operated in pairs of two. During a gamma-ray source observation, one detector would take observations of the source, while the other would slew slightly off source to measure the background levels. The two detectors would routinely switch roles, allowing for more accurate measurements of both the source and background. The instruments could slew with a speed of approximately 2 degrees per second.

COMPTEL[edit]

  • The Imaging Compton Telescope, (COMPTEL) by the Max Planck Institute for Extraterrestrial Physics, the University of New Hampshire, Netherlands Institute for Space Research, and ESA's Astrophysics Division was tuned to the 0.75-30 MeV energy range and determined the angle of arrival of photons to within a degree and the energy to within five percent at higher energies. The instrument had a field of view of one steradian. For cosmic gamma-ray events, the experiment required two nearly simultaneous interactions, in a set of front and rear scintillators. Gamma rays would Compton scatter in a forward detector module, where the interaction energy E1, given to the recoil electron was measured, while the Compton scattered photon would then be caught in one of a second layer of scintillators to the rear, where its total energy, E2, would be measured. From these two energies, E1 and E2, the Compton scattering angle, angle θ, can be determined, along with the total energy, E1 + E2, of the incident photon. The positions of the interactions, in both the front and rear scintillators, was also measured. The vector, V, connecting the two interaction points determined a direction to the sky, and the angle θ about this direction, defined a cone about V on which the source of the photon must lie, and a corresponding "event circle" on the sky. Because of the requirement for a near coincidence between the two interactions, with the correct delay of a few nanoseconds, most modes of background production were strongly suppressed. From the collection of many event energies and event circles, a map of the positions of sources, along with their photon fluxes and spectra, could be determined.
Comparison
Instrument Observing
BATSE 0.02 - 8 MeV
OSSE 0.05 - 10 MeV
COMPTEL 0.75 - 30 MeV
EGRET 20 - 30 000 MeV

EGRET[edit]

Results[edit]

The Moon as seen by the Compton Gamma Ray Observatory, in gamma rays of greater than 20 MeV. These are produced by cosmic ray bombardment of its surface. The Sun, which has no similar surface of high atomic number to act as target for cosmic rays, cannot be seen at all at these energies, which are too high to emerge from primary nuclear reactions, such as solar nuclear fusion.[4]

Basic results[edit]

  • The EGRET instrument conducted the first all sky survey above 100 MeV. Using four years of data it discovered 271 sources, 170 of which were unidentified.
  • The COMPTEL instrument completed an all sky map of 26
    Al
    (a radioactive isotope of aluminum).
  • The OSSE instrument completed the most comprehensive survey of the galactic center, and discovered a possible antimatter "cloud" above the center.
  • The BATSE instrument averaged one gamma ray burst event detection per day for a total of approximately 2700 detections. It definitively showed that the majority of gamma-ray bursts must originate in distant galaxies, not nearby in our own Milky Way, and therefore must be enormously energetic.
  • The discovery of the first four soft gamma ray repeaters; these sources were relatively weak, mostly below 100 keV and had unpredictable periods of activity and inactivity
  • The separation of GRBs into two time profiles: short duration GRBs that last less than 2 seconds, and long duration GRBs that last longer than this.

GRB 990123[edit]

Main article: GRB 990123

Gamma ray burst 990123 (23 January 1999) was one of the brightest bursts recorded at the time, and was the first GRB with an optical afterglow observed during the prompt gamma ray emission (a reverse shock flash). This allowed astronomers to measure a redshift of 1.6 and a distance of 3.2 Gpc (10 Gly). Combining the measured energy of the burst in gamma-rays and the distance, the total emitted energy assuming an isotropic explosion could be deduced and resulted in the direct conversion of approximately two solar masses into energy. This finally convinced the community that GRB afterglows resulted from highly collimated explosions, which strongly reduced the needed energy budget.

Miscellaneous results[edit]

Orbital boost[edit]

By Oct 1993 the 450 km orbit had decayed to 340 km and a reboost rocket firing took it back up to 450 km.[5] A second reboost from 440 km to 515 km was done between April and June 1997.[6] After this it was hoped CGRO would operate until 2007.

De-orbit[edit]

After one of its 3 gyroscopes failed in December 1999, the observatory was deliberately de-orbited. At the time, the observatory was still operational; however the failure of another gyroscope would have made de-orbiting much more difficult and dangerous. With some controversy, NASA decided in the interest of public safety that a controlled crash was preferable to letting the craft come down on its own at random.[2] Unlike the Hubble Space Telescope, it was not designed for on-orbit repair and refurbishment. It entered the Earth's atmosphere on 4 June 2000, with the debris that did not burn up falling harmlessly into the Pacific Ocean.[7]

This de-orbit was NASA's first intentional controlled de-orbit of a satellite. [8]

See also[edit]

References[edit]

External links[edit]