CREB-binding protein

From Wikipedia, the free encyclopedia
  (Redirected from CREB binding protein)
Jump to: navigation, search
CREB binding protein
Protein CREBBP PDB 1f81.png
PDB rendering based on 1f81.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols CREBBP ; CBP; KAT3A; RSTS
External IDs OMIM600140 MGI1098280 HomoloGene68393 ChEMBL: 5747 GeneCards: CREBBP Gene
EC number 2.3.1.48
RNA expression pattern
PBB GE CREBBP 202160 at tn.png
PBB GE CREBBP 211808 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 1387 12914
Ensembl ENSG00000005339 ENSMUSG00000022521
UniProt Q92793 F8VPR5
RefSeq (mRNA) NM_001079846 NM_001025432
RefSeq (protein) NP_001073315 NP_001020603
Location (UCSC) Chr 16:
3.78 – 3.93 Mb
Chr 16:
4.08 – 4.21 Mb
PubMed search [2] [3]

CREB-binding protein, also known as CREBBP or CBP, is a protein that in humans is encoded by the CREBBP gene.[1][2] The CREB protein carries out its function by activating transcription, where interaction with transcription factors is managed by one or more CREB domains: the nuclear receptor interaction domain (RID), the CREB and MYB interaction domain (KIX), the cysteine/histidine regions (TAZ1/CH1 and TAZ2/CH3) and the interferon response binding domain (IBiD). The CREB protein domains, KIX, TAZ1 and TAZ2, each bind tightly to a sequence spanning both transactivation domains 9aaTADs of transcription factor p53.[3][4]

Function[edit]

This gene is ubiquitously expressed and is involved in the transcriptional coactivation of many different transcription factors. First isolated as a nuclear protein that binds to cAMP-response element-binding protein (CREB), this gene is now known to play critical roles in embryonic development, growth control, and homeostasis by coupling chromatin remodeling to transcription factor recognition. The protein encoded by this gene has intrinsic histone acetyltransferase activity [5] and also acts as a scaffold to stabilize additional protein interactions with the transcription complex. This protein acetylates both histone and non-histone proteins. This protein shares regions of very high-sequence similarity with protein EP300 in its bromodomain, cysteine-histidine-rich regions, and histone acetyltransferase domain.[6] Recent results suggest that novel CBP-mediated post-translational N-glycosylation activity alters the conformation of CBP-interacting proteins, leading to regulation of gene expression, cell growth and differentiation,[7]

Clinical significance[edit]

Mutations in this gene cause Rubinstein-Taybi syndrome (RTS).[8] Chromosomal translocations involving this gene have been associated with acute myeloid leukemia.[6][9]

Interactions[edit]

CREB-binding protein has been shown to interact with:


References[edit]

  1. ^ Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (October 1993). "Phosphorylated CREB binds specifically to the nuclear protein CBP". Nature 365 (6449): 855–9. Bibcode:1993Natur.365..855C. doi:10.1038/365855a0. PMID 8413673. 
  2. ^ Wydner KL, Bhattacharya S, Eckner R, Lawrence JB, Livingston DM (November 1995). "Localization of human CREB-binding protein gene (CREBBP) to 16p13.2-p13.3 by fluorescence in situ hybridization". Genomics 30 (2): 395–6. PMID 8586450. 
  3. ^ Teufel DP, Freund SM, Bycroft M, Fersht AR (April 2007). "Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53". PNAS 104 (17): 7009–7014. Bibcode:2007PNAS..104.7009T. doi:10.1073/pnas.0702010104. PMC 1855428. PMID 17438265. ; Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M (June 2007). "Nine-amino-acid transactivation domain: establishment and prediction utilities". Genomics 89 (6): 756–68. doi:10.1016/j.ygeno.2007.02.003. PMID 17467953. ; Piskacek M (2009-11-05). "9aaTAD is a common transactivation domain recruits multiple general coactivators TAF9, MED15, CBP/p300 and GCN5". Nature Precedings Pre-publication. doi:10.1038/npre.2009.3488.2. ; Piskacek M (2009-11-05). "9aaTADs mimic DNA to interact with a pseudo-DNA Binding Domain KIX of Med15 (Molecular Chameleons)". Nature Precedings Pre-publication. doi:10.1038/npre.2009.3939.1. ; Piskacek M; Piskacek, Martin (2009-11-20). "9aaTAD Prediction result (2006)". Nature Precedings Pre-publication. doi:10.1038/npre.2009.3984.1. 
  4. ^ The prediction for 9aaTADs (for both acidic and hydrophilic transactivation domains) is available online from ExPASy http://us.expasy.org/tools/ and EMBnet Spain http://www.es.embnet.org/Services/EMBnetAT/htdoc/9aatad/
  5. ^ Ogryzko VV et al. "The transcriptional coactivators p300 and CBP are histone acetyltransferases". Cell. 1996 87(5):953-9.[1]
  6. ^ a b "Entrez Gene: CREBBP (CREB-binding protein)". 
  7. ^ Siddique H, Rao VN, Reddy ES (Aug 2009). "CBP-mediated post-translational N-glycosylation of BRCA2". Int J Oncol. 35 (2): 16387–91. doi:10.3892/ijo_00000351. PMID 19578754. 
  8. ^ Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ (July 1995). "Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP". Nature 376 (6538): 348–51. Bibcode:1995Natur.376..348P. doi:10.1038/376348a0. PMID 7630403. 
  9. ^ Vizmanos JL, Larráyoz MJ, Lahortiga I, Floristán F, Alvarez C, Odero MD, Novo FJ, Calasanz MJ (April 2003). "t(10;16)(q22;p13) and MORF-CREBBP fusion is a recurrent event in acute myeloid leukemia". Genes Chromosomes Cancer 36 (4): 402–5. doi:10.1002/gcc.10174. PMID 12619164. 
  10. ^ a b c Sano Y, Tokitou F, Dai P, Maekawa T, Yamamoto T, Ishii S (1998). "CBP alleviates the intramolecular inhibition of ATF-2 function". J. Biol. Chem. 273 (44): 29098–105. doi:10.1074/jbc.273.44.29098. PMID 9786917. 
  11. ^ a b Kim J, Jia L, Stallcup MR, Coetzee GA (2005). "The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus". J. Mol. Endocrinol. 34 (1): 107–18. doi:10.1677/jme.1.01701. PMID 15691881. 
  12. ^ Frønsdal K, Engedal N, Slagsvold T, Saatcioglu F (1998). "CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1". J. Biol. Chem. 273 (48): 31853–9. doi:10.1074/jbc.273.48.31853. PMID 9822653. 
  13. ^ Ishitani K, Yoshida T, Kitagawa H, Ohta H, Nozawa S, Kato S (2003). "p54nrb acts as a transcriptional coactivator for activation function 1 of the human androgen receptor". Biochem. Biophys. Res. Commun. 306 (3): 660–5. doi:10.1016/S0006-291X(03)01021-0. PMID 12810069. 
  14. ^ a b Aarnisalo P, Palvimo JJ, Jänne OA (1998). "CREB-binding protein in androgen receptor-mediated signaling". Proc. Natl. Acad. Sci. U.S.A. 95 (5): 2122–7. doi:10.1073/pnas.95.5.2122. PMC 19270. PMID 9482849. 
  15. ^ Pitkänen J, Doucas V, Sternsdorf T, Nakajima T, Aratani S, Jensen K, Will H, Vähämurto P, Ollila J, Vihinen M, Scott HS, Antonarakis SE, Kudoh J, Shimizu N, Krohn K, Peterson P (2000). "The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein". J. Biol. Chem. 275 (22): 16802–9. doi:10.1074/jbc.M908944199. PMID 10748110. 
  16. ^ Iioka T, Furukawa K, Yamaguchi A, Shindo H, Yamashita S, Tsukazaki T (2003). "P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain". J. Bone Miner. Res. 18 (8): 1419–29. doi:10.1359/jbmr.2003.18.8.1419. PMID 12929931. 
  17. ^ a b c Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM (2002). "p300 Modulates the BRCA1 inhibition of estrogen receptor activity". Cancer Res. 62 (1): 141–51. PMID 11782371. 
  18. ^ Pao GM, Janknecht R, Ruffner H, Hunter T, Verma IM (2000). "CBP/p300 interact with and function as transcriptional coactivators of BRCA1". Proc. Natl. Acad. Sci. U.S.A. 97 (3): 1020–5. doi:10.1073/pnas.97.3.1020. PMC 15508. PMID 10655477. 
  19. ^ Chai YL, Cui J, Shao N, Shyam E, Reddy P, Rao VN (1999). "The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter". Oncogene 18 (1): 263–8. doi:10.1038/sj.onc.1202323. PMID 9926942. 
  20. ^ Benezra M, Chevallier N, Morrison DJ, MacLachlan TK, El-Deiry WS, Licht JD (2003). "BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit". J. Biol. Chem. 278 (29): 26333–41. doi:10.1074/jbc.M303076200. PMID 12700228. 
  21. ^ a b Neish AS, Anderson SF, Schlegel BP, Wei W, Parvin JD (1998). "Factors associated with the mammalian RNA polymerase II holoenzyme". Nucleic Acids Res. 26 (3): 847–53. doi:10.1093/nar/26.3.847. PMC 147327. PMID 9443979. 
  22. ^ Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K, Tarakhovsky A, Okada M (2000). "Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases". Nature 404 (6781): 999–1003. doi:10.1038/35010121. PMID 10801129. 
  23. ^ Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR (2003). "CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation". J. Biol. Chem. 278 (38): 36959–65. doi:10.1074/jbc.M303147200. PMID 12857754. 
  24. ^ Lorentz O, Suh ER, Taylor JK, Boudreau F, Traber PG (1999). "CREB-binding [corrected] protein interacts with the homeodomain protein Cdx2 and enhances transcriptional activity". J. Biol. Chem. 274 (11): 7196–9. doi:10.1074/jbc.274.11.7196. PMID 10066780. 
  25. ^ Shi Y, Venkataraman SL, Dodson GE, Mabb AM, LeBlanc S, Tibbetts RS (2004). "Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress". Proc. Natl. Acad. Sci. U.S.A. 101 (16): 5898–903. doi:10.1073/pnas.0307718101. PMC 395895. PMID 15073328. 
  26. ^ Shimomura A, Ogawa Y, Kitani T, Fujisawa H, Hagiwara M (1996). "Calmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein". J. Biol. Chem. 271 (30): 17957–60. doi:10.1074/jbc.271.30.17957. PMID 8663317. 
  27. ^ Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (1997). "Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions". Cell 91 (6): 741–52. doi:10.1016/S0092-8674(00)80463-8. PMID 9413984. 
  28. ^ a b Zor T, Mayr BM, Dyson HJ, Montminy MR, Wright PE (2002). "Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators". J. Biol. Chem. 277 (44): 42241–8. doi:10.1074/jbc.M207361200. PMID 12196545. 
  29. ^ a b Giebler HA, Lemasson I, Nyborg JK (2000). "p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation". Mol. Cell. Biol. 20 (13): 4849–58. doi:10.1128/MCB.20.13.4849-4858.2000. PMC 85936. PMID 10848610. 
  30. ^ a b Zhang Q, Vo N, Goodman RH (2000). "Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB". Mol. Cell. Biol. 20 (14): 4970–8. doi:10.1128/MCB.20.14.4970-4978.2000. PMC 85947. PMID 10866654. 
  31. ^ a b Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ (2001). "MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein". Mol. Cell. Biol. 21 (7): 2249–58. doi:10.1128/MCB.21.7.2249-2258.2001. PMC 86859. PMID 11259575. 
  32. ^ Ledo F, Kremer L, Mellström B, Naranjo JR (2002). "Ca2+-dependent block of CREB-CBP transcription by repressor DREAM". EMBO J. 21 (17): 4583–92. doi:10.1093/emboj/cdf440. PMC 126180. PMID 12198160. 
  33. ^ a b Yamaguchi Y, Wada T, Suzuki F, Takagi T, Hasegawa J, Handa H (1998). "Casein kinase II interacts with the bZIP domains of several transcription factors". Nucleic Acids Res. 26 (16): 3854–61. doi:10.1093/nar/26.16.3854. PMC 147779. PMID 9685505. 
  34. ^ Li S, Aufiero B, Schiltz RL, Walsh MJ (2000). "Regulation of the homeodomain CCAAT displacement/cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP". Proc. Natl. Acad. Sci. U.S.A. 97 (13): 7166–71. doi:10.1073/pnas.130028697. PMC 16517. PMID 10852958. 
  35. ^ a b c d Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E, Nakatani Y, Reinberg D (1998). "A human RNA polymerase II complex containing factors that modify chromatin structure". Mol. Cell. Biol. 18 (9): 5355–63. PMC 109120. PMID 9710619. 
  36. ^ Zhao F, McCarrick-Walmsley R, Akerblad P, Sigvardsson M, Kadesch T (2003). "Inhibition of p300/CBP by early B-cell factor". Mol. Cell. Biol. 23 (11): 3837–46. doi:10.1128/MCB.23.11.3837-3846.2003. PMC 155219. PMID 12748286. 
  37. ^ Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G (2001). "Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles". J. Biol. Chem. 276 (48): 44936–43. doi:10.1074/jbc.M106733200. PMID 11568182. 
  38. ^ a b Sheppard HM, Harries JC, Hussain S, Bevan C, Heery DM (2001). "Analysis of the steroid receptor coactivator 1 (SRC1)-CREB binding protein interaction interface and its importance for the function of SRC1". Mol. Cell. Biol. 21 (1): 39–50. doi:10.1128/MCB.21.1.39-50.2001. PMC 86566. PMID 11113179. 
  39. ^ Nasrin N, Ogg S, Cahill CM, Biggs W, Nui S, Dore J, Calvo D, Shi Y, Ruvkun G, Alexander-Bridges MC (2000). "DAF-16 recruits the CREB-binding protein coactivator complex to the insulin-like growth factor binding protein 1 promoter in HepG2 cells". Proc. Natl. Acad. Sci. U.S.A. 97 (19): 10412–7. doi:10.1073/pnas.190326997. PMC 27038. PMID 10973497. 
  40. ^ Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S (1999). "Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3". J. Biol. Chem. 274 (12): 8143–52. doi:10.1074/jbc.274.12.8143. PMID 10075717. 
  41. ^ a b c Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002). "Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription". Mol. Cell 9 (2): 265–77. doi:10.1016/S1097-2765(02)00453-7. PMID 11864601. 
  42. ^ Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y (1999). "Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300". EMBO J. 18 (7): 1905–14. doi:10.1093/emboj/18.7.1905. PMC 1171276. PMID 10202154. 
  43. ^ Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM (1999). "Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1". Genes Dev. 13 (1): 64–75. doi:10.1101/gad.13.1.64. PMC 316375. PMID 9887100. 
  44. ^ Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son M, Park H (2008). "Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation". Mol. Pharmacol. 74 (1): 236–45. doi:10.1124/mol.108.045278. PMID 18426857. 
  45. ^ Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML (2002). "Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2". Nat. Cell Biol. 4 (1): 1–10. doi:10.1038/ncb715. PMID 11740489. 
  46. ^ Soutoglou E, Papafotiou G, Katrakili N, Talianidis I (2000). "Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins". J. Biol. Chem. 275 (17): 12515–20. doi:10.1074/jbc.275.17.12515. PMID 10777539. 
  47. ^ Chariot A, van Lint C, Chapelier M, Gielen J, Merville MP, Bours V (1999). "CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein". Oncogene 18 (27): 4007–14. doi:10.1038/sj.onc.1202776. PMID 10435624. 
  48. ^ Yoshida E, Aratani S, Itou H, Miyagishi M, Takiguchi M, Osumu T, Murakami K, Fukamizu A (1997). "Functional association between CBP and HNF4 in trans-activation". Biochem. Biophys. Res. Commun. 241 (3): 664–9. doi:10.1006/bbrc.1997.7871. PMID 9434765. 
  49. ^ Dell H, Hadzopoulou-Cladaras M (1999). "CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression". J. Biol. Chem. 274 (13): 9013–21. doi:10.1074/jbc.274.13.9013. PMID 10085149. 
  50. ^ Vieyra D, Loewith R, Scott M, Bonnefin P, Boisvert FM, Cheema P, Pastyryeva S, Meijer M, Johnston RN, Bazett-Jones DP, McMahon S, Cole MD, Young D, Riabowol K (2002). "Human ING1 proteins differentially regulate histone acetylation". J. Biol. Chem. 277 (33): 29832–9. doi:10.1074/jbc.M200197200. PMID 12015309. 
  51. ^ Hong W, Resnick RJ, Rakowski C, Shalloway D, Taylor SJ, Blobel GA (2002). "Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68". Mol. Cancer Res. 1 (1): 48–55. PMID 12496368. 
  52. ^ Song CZ, Keller K, Murata K, Asano H, Stamatoyannopoulos G (2002). "Functional interaction between coactivators CBP/p300, PCAF, and transcription factor FKLF2". J. Biol. Chem. 277 (9): 7029–36. doi:10.1074/jbc.M108826200. PMC 2808425. PMID 11748222. 
  53. ^ Geiman DE, Ton-That H, Johnson JM, Yang VW (2000). "Transactivation and growth suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction". Nucleic Acids Res. 28 (5): 1106–13. doi:10.1093/nar/28.5.1106. PMC 102607. PMID 10666450. 
  54. ^ Barlev NA, Poltoratsky V, Owen-Hughes T, Ying C, Liu L, Workman JL, Berger SL (1998). "Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex". Mol. Cell. Biol. 18 (3): 1349–58. PMC 108848. PMID 9488450. 
  55. ^ Chen Q, Dowhan DH, Liang D, Moore DD, Overbeek PA (2002). "CREB-binding protein/p300 co-activation of crystallin gene expression". J. Biol. Chem. 277 (27): 24081–9. doi:10.1074/jbc.M201821200. PMID 11943779. 
  56. ^ Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (2002). "Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain". J. Biol. Chem. 277 (45): 43168–74. doi:10.1074/jbc.M207660200. PMID 12205094. 
  57. ^ Shetty S, Takahashi T, Matsui H, Ayengar R, Raghow R (1999). "Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300)". Biochem. J. 339 (3): 751–8. doi:10.1042/0264-6021:3390751. PMC 1220213. PMID 10215616. 
  58. ^ a b Bessa M, Saville MK, Watson RJ (2001). "Inhibition of cyclin A/Cdk2 phosphorylation impairs B-Myb transactivation function without affecting interactions with DNA or the CBP coactivator". Oncogene 20 (26): 3376–86. doi:10.1038/sj.onc.1204439. PMID 11423988. 
  59. ^ Polesskaya A, Naguibneva I, Duquet A, Bengal E, Robin P, Harel-Bellan A (2001). "Interaction between acetylated MyoD and the bromodomain of CBP and/or p300". Mol. Cell. Biol. 21 (16): 5312–20. doi:10.1128/MCB.21.16.5312-5320.2001. PMC 87255. PMID 11463815. 
  60. ^ Sartorelli V, Huang J, Hamamori Y, Kedes L (1997). "Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C". Mol. Cell. Biol. 17 (2): 1010–26. PMC 231826. PMID 9001254. 
  61. ^ a b Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ, O'Malley BW (2002). "Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase". Mol. Cell. Biol. 22 (10): 3549–61. doi:10.1128/MCB.22.10.3549-3561.2002. PMC 133790. PMID 11971985. 
  62. ^ Naltner A, Wert S, Whitsett JA, Yan C (2000). "Temporal/spatial expression of nuclear receptor coactivators in the mouse lung". Am. J. Physiol. Lung Cell Mol. Physiol. 279 (6): L1066–74. PMID 11076796. 
  63. ^ Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, Jhun BH, Cheong JH, Lee YC, Meltzer PS, Lee JW (1999). "A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo". J. Biol. Chem. 274 (48): 34283–93. doi:10.1074/jbc.274.48.34283. PMID 10567404. 
  64. ^ Lee SK, Jung SY, Kim YS, Na SY, Lee YC, Lee JW (2001). "Two distinct nuclear receptor-interaction domains and CREB-binding protein-dependent transactivation function of activating signal cointegrator-2". Mol. Endocrinol. 15 (2): 241–54. doi:10.1210/me.15.2.241. PMID 11158331. 
  65. ^ a b Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001). "Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms". Cell 104 (3): 365–76. doi:10.1016/S0092-8674(01)00224-0. PMID 11239394. 
  66. ^ Yang T, Davis RJ, Chow CW (2001). "Requirement of two NFATc4 transactivation domains for CBP potentiation". J. Biol. Chem. 276 (43): 39569–76. doi:10.1074/jbc.M102961200. PMID 11514544. 
  67. ^ Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M (2001). "Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription". Genes Cells 6 (10): 857–68. doi:10.1046/j.1365-2443.2001.00469.x. PMID 11683914. 
  68. ^ Hung HL, Kim AY, Hong W, Rakowski C, Blobel GA (2001). "Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation". J. Biol. Chem. 276 (14): 10715–21. doi:10.1074/jbc.M007846200. PMID 11154691. 
  69. ^ Almlöf T, Wallberg AE, Gustafsson JA, Wright AP (1998). "Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor tau 1-core activation domain and target factors". Biochemistry 37 (26): 9586–94. doi:10.1021/bi973029x. PMID 9649342. 
  70. ^ Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM (1999). "CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity". Mol. Cell. Biol. 19 (1): 764–76. PMC 83933. PMID 9858599. 
  71. ^ Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP (2002). "MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation". EMBO J. 21 (22): 6236–45. doi:10.1093/emboj/cdf616. PMC 137207. PMID 12426395. 
  72. ^ Livengood JA, Scoggin KE, Van Orden K, McBryant SJ, Edayathumangalam RS, Laybourn PJ, Nyborg JK (2002). "p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300". J. Biol. Chem. 277 (11): 9054–61. doi:10.1074/jbc.M108870200. PMID 11782467. 
  73. ^ Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM (1999). "Activation of PPARgamma coactivator-1 through transcription factor docking". Science 286 (5443): 1368–71. doi:10.1126/science.286.5443.1368. PMID 10558993. 
  74. ^ Karetsou Z, Kretsovali A, Murphy C, Tsolas O, Papamarcaki T (2002). "Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription". EMBO Rep. 3 (4): 361–6. doi:10.1093/embo-reports/kvf071. PMC 1084059. PMID 11897665. 
  75. ^ a b Matsuzaki K, Minami T, Tojo M, Honda Y, Saitoh N, Nagahiro S, Saya H, Nakao M (2003). "PML-nuclear bodies are involved in cellular serum response". Genes Cells 8 (3): 275–86. doi:10.1046/j.1365-2443.2003.00632.x. PMID 12622724. 
  76. ^ Doucas V, Tini M, Egan DA, Evans RM (1999). "Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling". Proc. Natl. Acad. Sci. U.S.A. 96 (6): 2627–32. doi:10.1073/pnas.96.6.2627. PMC 15819. PMID 10077561. 
  77. ^ Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman LP, Pandolfi PP (1999). "A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins". Nat. Genet. 23 (3): 287–95. doi:10.1038/15463. PMID 10610177. 
  78. ^ Jang HD, Yoon K, Shin YJ, Kim J, Lee SY (2004). "PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit". J. Biol. Chem. 279 (23): 24873–80. doi:10.1074/jbc.M313018200. PMID 15140884. 
  79. ^ Zhong H, May MJ, Jimi E, Ghosh S (2002). "The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1". Mol. Cell 9 (3): 625–36. doi:10.1016/S1097-2765(02)00477-X. PMID 11931769. 
  80. ^ Parry GC, Mackman N (1997). "Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription". J. Immunol. 159 (11): 5450–6. PMID 9548485. 
  81. ^ Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T (1997). "CREB-binding protein/p300 are transcriptional coactivators of p65". Proc. Natl. Acad. Sci. U.S.A. 94 (7): 2927–32. doi:10.1073/pnas.94.7.2927. PMC 20299. PMID 9096323. 
  82. ^ Merienne K, Pannetier S, Harel-Bellan A, Sassone-Corsi P (2001). "Mitogen-regulated RSK2-CBP interaction controls their kinase and acetylase activities". Mol. Cell. Biol. 21 (20): 7089–96. doi:10.1128/MCB.21.20.7089-7096.2001. PMC 99884. PMID 11564891. 
  83. ^ Hirose T, Fujii R, Nakamura H, Aratani S, Fujita H, Nakazawa M, Nakamura K, Nishioka K, Nakajima T (2003). "Regulation of CREB-mediated transcription by association of CDK4 binding protein p34SEI-1 with CBP". Int. J. Mol. Med. 11 (6): 705–12. doi:10.3892/ijmm.11.6.705. PMID 12736710. 
  84. ^ DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R, Brown M (2000). "BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation". Mol. Cell. Biol. 20 (20): 7541–9. doi:10.1128/MCB.20.20.7541-7549.2000. PMC 86306. PMID 11003650. 
  85. ^ Pearson KL, Hunter T, Janknecht R (1999). "Activation of Smad1-mediated transcription by p300/CBP". Biochim. Biophys. Acta 1489 (2-3): 354–64. doi:10.1016/S0167-4781(99)00166-9. PMID 10673036. 
  86. ^ a b Oliner JD, Andresen JM, Hansen SK, Zhou S, Tjian R (1996). "SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein". Genes Dev. 10 (22): 2903–11. doi:10.1101/gad.10.22.2903. PMID 8918891. 
  87. ^ Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A (2004). "Dendrite development regulated by CREST, a calcium-regulated transcriptional activator". Science 303 (5655): 197–202. doi:10.1126/science.1089845. PMID 14716005. 
  88. ^ Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE (1996). "Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling". Proc. Natl. Acad. Sci. U.S.A. 93 (26): 15092–6. doi:10.1073/pnas.93.26.15092. PMC 26361. PMID 8986769. 
  89. ^ Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D'Andrea A, Livingston DM (1996). "Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha". Nature 383 (6598): 344–7. doi:10.1038/383344a0. PMID 8848048. 
  90. ^ Litterst CM, Pfitzner E (2001). "Transcriptional activation by STAT6 requires the direct interaction with NCoA-1". J. Biol. Chem. 276 (49): 45713–21. doi:10.1074/jbc.M108132200. PMID 11574547. 
  91. ^ McDonald C, Reich NC (1999). "Cooperation of the transcriptional coactivators CBP and p300 with Stat6". J. Interferon Cytokine Res. 19 (7): 711–22. doi:10.1089/107999099313550. PMID 10454341. 
  92. ^ Bradney C, Hjelmeland M, Komatsu Y, Yoshida M, Yao TP, Zhuang Y (2003). "Regulation of E2A activities by histone acetyltransferases in B lymphocyte development". J. Biol. Chem. 278 (4): 2370–6. doi:10.1074/jbc.M211464200. PMID 12435739. 
  93. ^ Misra P, Qi C, Yu S, Shah SH, Cao WQ, Rao MS, Thimmapaya B, Zhu Y, Reddy JK (2002). "Interaction of PIMT with transcriptional coactivators CBP, p300, and PBP differential role in transcriptional regulation". J. Biol. Chem. 277 (22): 20011–9. doi:10.1074/jbc.M201739200. PMID 11912212. 
  94. ^ Gizard F, Lavallée B, DeWitte F, Hum DW (2001). "A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression". J. Biol. Chem. 276 (36): 33881–92. doi:10.1074/jbc.M100113200. PMID 11349124. 
  95. ^ Silverman ES, Du J, Williams AJ, Wadgaonkar R, Drazen JM, Collins T (1998). "cAMP-response-element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1)". Biochem. J. 336 (1): 183–9. PMC 1219856. PMID 9806899. 

Further reading[edit]

  • Goldman PS, Tran VK, Goodman RH (1997). "The multifunctional role of the co-activator CBP in transcriptional regulation.". Recent Prog. Horm. Res. 52: 103–19; discussion 119–20. PMID 9238849. 
  • Marcello A, Zoppé M, Giacca M (2002). "Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator.". IUBMB Life 51 (3): 175–81. doi:10.1080/152165401753544241. PMID 11547919. 
  • Matt T (2002). "Transcriptional control of the inflammatory response: a role for the CREB-binding protein (CBP).". Acta Med. Austriaca 29 (3): 77–9. doi:10.1046/j.1563-2571.2002.02010.x. PMID 12168567. 
  • Combes R, Balls M, Bansil L, et al. (2002). "An assessment of progress in the use of alternatives in toxicity testing since the publication of the report of the second FRAME Toxicity Committee (1991).". Alternatives to laboratory animals : ATLA 30 (4): 365–406. PMID 12234245. 
  • Minghetti L, Visentin S, Patrizio M, et al. (2004). "Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions.". Neurochem. Res. 29 (5): 965–78. doi:10.1023/B:NERE.0000021241.90133.89. PMID 15139295. 
  • Kino T, Pavlakis GN (2004). "Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1.". DNA Cell Biol. 23 (4): 193–205. doi:10.1089/104454904773819789. PMID 15142377. 
  • Greene WC, Chen LF (2004). "Regulation of NF-kappaB action by reversible acetylation.". Novartis Found. Symp. 259: 208–17; discussion 218–25. doi:10.1002/0470862637.ch15. PMID 15171256. 
  • Liou LY, Herrmann CH, Rice AP (2005). "HIV-1 infection and regulation of Tat function in macrophages.". Int. J. Biochem. Cell Biol. 36 (9): 1767–75. doi:10.1016/j.biocel.2004.02.018. PMID 15183343. 
  • Pugliese A, Vidotto V, Beltramo T, et al. (2005). "A review of HIV-1 Tat protein biological effects.". Cell Biochem. Funct. 23 (4): 223–7. doi:10.1002/cbf.1147. PMID 15473004. 
  • Bannwarth S, Gatignol A (2005). "HIV-1 TAR RNA: the target of molecular interactions between the virus and its host.". Curr. HIV Res. 3 (1): 61–71. doi:10.2174/1570162052772924. PMID 15638724. 
  • Le Rouzic E, Benichou S (2006). "The Vpr protein from HIV-1: distinct roles along the viral life cycle.". Retrovirology 2: 11. doi:10.1186/1742-4690-2-11. PMC 554975. PMID 15725353. 
  • Gibellini D, Vitone F, Schiavone P, Re MC (2005). "HIV-1 tat protein and cell proliferation and survival: a brief review.". New Microbiol. 28 (2): 95–109. PMID 16035254. 
  • Hetzer C, Dormeyer W, Schnölzer M, Ott M (2006). "Decoding Tat: the biology of HIV Tat posttranslational modifications.". Microbes Infect. 7 (13): 1364–9. doi:10.1016/j.micinf.2005.06.003. PMID 16046164. 
  • Peruzzi F (2006). "The multiple functions of HIV-1 Tat: proliferation versus apoptosis.". Front. Biosci. 11: 708–17. doi:10.2741/1829. PMID 16146763. 

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.