Categorification

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, categorification refers to the process of replacing set-theoretic theorems by category-theoretic analogues. Categorification, when done successfully, replaces sets by categories, functions with functors, and equations by natural isomorphisms of functors satisfying additional properties. The term was coined by Louis Crane.

Categorification is the reverse process of decategorification. Decategorification is a systematic process by which isomorphic objects in a category are identified as equal. Whereas decategorification is a straightforward process, categorification is usually much less straightforward, and requires insight into individual situations.

Examples of categorification[edit]

One form of categorification takes a structure described in terms of sets, and interprets the sets as isomorphism classes of objects in a category. For example, the set of natural numbers can be seen as the set of cardinalities of finite sets (and any two sets with the same cardinality are isomorphic). In this case, operations on the set of natural numbers, such as addition and multiplication, can be seen as carrying information about products and coproducts of the category of finite sets. Less abstractly, the idea here is that manipulating sets of actual objects, and taking coproducts (combining two sets in a union) or products (building arrays of things to keep track of large numbers of them) came first. Later, the concrete structure of sets was abstracted away - taken "only up to isomorphism", to produce the abstract theory of arithmetic. This is a "decategorification" - categorification reverses this step.

Other examples include homology theories in topology. See also Khovanov homology as a knot invariant in knot theory.

See also[edit]

Further reading[edit]