Potassium hydroxide

From Wikipedia, the free encyclopedia
  (Redirected from Caustic potash)
Jump to: navigation, search
Potassium hydroxide
Crystal structure of KOH
Pellets of potassium hydroxide
Identifiers
CAS number 1310-58-3 YesY
PubChem 14797
ChemSpider 14113 YesY
UNII WZH3C48M4T YesY
EC number 215-181-3
UN number 1813
ChEBI CHEBI:32035 YesY
RTECS number TT2100000
Jmol-3D images Image 1
Properties
Molecular formula HKO
Molar mass 56.11 g mol−1
Appearance white solid, deliquescent
Odor odorless
Density 2.044 g/cm3 (20 °C)[1]
2.12 g/cm3 (25 °C)[2]
Melting point 406 °C (763 °F; 679 K)
Boiling point 1,327 °C (2,421 °F; 1,600 K)
Solubility in water 85 g/100 g (-23.2 °C)
97 g/100 mL (0 °C)
121 g/100 mL (25 °C)
138.3 g/100 mL (50 °C)
162.9 g/100 mL (100 °C)[1][3]
Solubility soluble in alcohol, glycerol
insoluble in ether, liquid ammonia
Solubility in methanol 55 g/100 g (28 °C)[2]
Acidity (pKa) 13.5 (0.1 M)
Refractive index (nD) 1.409 (20 °C)
Structure
Crystal structure rhombohedral
Thermochemistry
Specific
heat capacity
C
65.87 J/mol·K[2]
Std molar
entropy
So298
79.32 J/mol·K[4][2]
Std enthalpy of
formation
ΔfHo298
-425.8 kJ/mol[4][2]
Gibbs free energy ΔG -380.2 kJ/mol[2]
Hazards
MSDS ICSC 0357
GHS pictograms The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)[5]
GHS signal word Danger
GHS hazard statements H302, H314[5]
GHS precautionary statements P280, P305+351+338, P310[5]
EU Index 019-002-00-8
EU classification Corrosive C Harmful Xn
R-phrases R22, R35
S-phrases (S1/2), S26, S36/37/39, S45
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calcium Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point Non-flammable
LD50 273 mg/kg (rat, oral)
Related compounds
Other anions Potassium hydrosulfide
Potassium amide
Other cations Lithium hydroxide
Sodium hydroxide
Rubidium hydroxide
Caesium hydroxide
Related compounds Potassium oxide
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY (verify) (what is: YesY/N?)
Infobox references

Potassium hydroxide is an inorganic compound with the formula KOH, commonly called caustic potash.

Along with sodium hydroxide (NaOH), this colorless solid is a prototypical strong base. It has many industrial and niche applications; most applications exploit its reactivity toward acids and its corrosive nature. In 2005, an estimated 700,000 to 800,000 tonnes were produced. Approximately 100 times more NaOH than KOH is produced annually.[6] KOH is noteworthy as the precursor to most soft and liquid soaps as well as numerous potassium-containing chemicals.

Properties and structure[edit]

Potassium hydroxide can be found in pure form by reacting sodium hydroxide with impure potassium. Potassium hydroxide is usually sold as translucent pellets, which will become tacky in air because KOH is hygroscopic. Consequently, KOH typically contains varying amounts of water (as well as carbonates, see below). Its dissolution in water is strongly exothermic, meaning the process gives off significant heat. Concentrated aqueous solutions are sometimes called potassium lyes. Even at high temperatures, solid KOH does not dehydrate readily.[7]

Potassium hydroxide solutions with concentrations of approximately 0.5 to 2.0% are irritating when coming in contact with the skin, while concentrations higher than 2% are corrosive.[8]

Structure[edit]

At higher temperatures, solid KOH crystallizes in the NaCl crystal structure. The OH group is either rapidly or randomly disordered so that the OH
group is effectively a spherical anion of radius 1.53 Å (between Cl
and F
in size). At room temperature, the OH
groups are ordered and the environment about the K+
centers is distorted, with K+
—OH
distances ranging from 2.69 to 3.15 Å, depending on the orientation of the OH group. KOH forms a series of crystalline hydrates, namely the monohydrate KOH·H
2
O
, the dihydrate KOH·2 H
2
O
, and the tetrahydrate KOH·4 H
2
O
.[9]

Solubility and desiccating properties[edit]

Approximately 121 g of KOH will dissolve in 100 mL of water at room temperature compared with 100 g of NaOH in the same volume (on a molar basis, KOH is slightly less soluble than NaOH). Lower molecular weight alcohols such as methanol, ethanol, and propanols are also excellent solvents.

Because of its high affinity for water, KOH serves as a desiccant in the laboratory. It is often used to dry basic solvents, especially amines and pyridines: distillation of these basic liquids from a slurry of KOH yields the anhydrous reagent.

Thermal stability[edit]

Like NaOH, KOH exhibits high thermal stability. The gaseous species is dimeric. Because of its high stability and relatively low melting point, it is often melt-cast as pellets or rods, forms that have low surface area and convenient handling properties.

Reactions[edit]

As a base[edit]

KOH is highly basic, forming strongly alkaline solutions in water and other polar solvents. These solutions are capable of deprotonating many acids, even weak ones. In analytical chemistry, titrations using solutions of KOH are used to assay acids.

As a nucleophile in organic chemistry[edit]

KOH, like NaOH, serves as a source of OH
, a highly nucleophilic anion that attacks polar bonds in both inorganic and organic materials. In perhaps its most well-known reaction, aqueous KOH saponifies esters:

KOH + RCO2R' → RCO2K + R'OH

When R is a long chain, the product is called a potassium soap. This reaction is manifested by the "greasy" feel that KOH gives when touched — fats on the skin are rapidly converted to soap and glycerol.

Molten KOH is used to displace halides and other leaving groups. The reaction is especially useful for aromatic reagents to give the corresponding phenols.[10]

Reactions with inorganic compounds[edit]

Complementary to its reactivity toward acids, KOH attacks oxides. Thus, SiO2 is attacked by KOH to give soluble potassium silicates. KOH reacts with carbon dioxide to give bicarbonate:

KOH + CO2 → KHCO3

Manufacture[edit]

Historically KOH was made by adding potassium carbonate (potash) to a strong solution of calcium hydroxide (slaked lime), leading to a metathesis reaction which caused calcium carbonate to precipitate, leaving potassium hydroxide in solution:

Ca(OH)2 + K2CO3 → CaCO3 + 2 KOH

Filtering off the precipitated calcium carbonate and boiling down the solution gives potassium hydroxide ("calcinated or caustic potash"). It was the most important method of producing potassium hydroxide until the late 19th century, when it was largely replaced by the current method of electrolysis of potassium chloride solutions..[6] The method is analogous to the manufacture of sodium hydroxide (see chloralkali process):

2 KCl + 2 H2O → 2 KOH + Cl2 + H2

Hydrogen gas forms as a by-product on the cathode; concurrently, an anodic oxidation of the chloride ion takes place, forming chlorine gas as a byproduct. Separation of the anodic and cathodic spaces in the electrolysis cell is essential for this process.[11]

Uses[edit]

KOH and NaOH can be used interchangeably for a number of applications, although in industry, NaOH is preferred because of its lower cost.

Precursor to other potassium compounds[edit]

Many potassium salts are prepared by neutralization reactions involving KOH. The potassium salts of carbonate, cyanide, permanganate, phosphate, and various silicates are prepared by treating either the oxides or the acids with KOH.[6] The high solubility of potassium phosphate is desirable in fertilizers.

Manufacture of biodiesel[edit]

Although more expensive than using sodium hydroxide, KOH works well in the manufacture of biodiesel by transesterification of the triglycerides in vegetable oil. Glycerin from potassium hydroxide-processed biodiesel is useful as an inexpensive food supplement for livestock, once the toxic methanol is removed.[12]

Manufacture of soft soaps[edit]

The saponification of fats with KOH is used to prepare the corresponding "potassium soaps", which are softer than the more common sodium hydroxide-derived soaps. Because of their softness and greater solubility, potassium soaps require less water to liquefy, and can thus contain more cleaning agent than liquefied sodium soaps.[13]

As an electrolyte[edit]

Potassium carbonate, formed from the hydroxide solution leaking from an alkaline battery
Potassium carbonate, formed from the hydroxide solution leaking from an alkaline battery

Aqueous potassium hydroxide is employed as the electrolyte in alkaline batteries based on nickel-cadmium, nickel-hydrogen, and manganese dioxide-zinc. Potassium hydroxide is preferred over sodium hydroxide because its solutions are more conductive.[14] The Nickel Metal Hydride batteries in the Toyota Prius use a mixture of potassium hydroxide and sodium hydroxide.[15] Nickel–iron batteries also use potassium hydroxide electrolyte.

Niche applications[edit]

Like sodium hydroxide, potassium hydroxide attracts numerous specialized applications, virtually all of which rely on its properties as a strong chemical base with its consequent ability to degrade many materials. For example, in a process commonly referred to as "chemical cremation" or "resomation", potassium hydroxide hastens the decomposition of soft tissues, both animal and human, to leave behind only the bones and other hard tissues.[16] Entomologists wishing to study the fine structure of insect anatomy may use a 10% aqueous solution of KOH to apply this process.[17]

In chemical synthesis, the choice between the use of KOH and the use of sodium hydroxide, NaOH, is guided by the solubility of the resulting salt.

The corrosive properties of potassium hydroxide make it a useful ingredient in agents and preparations that clean and disinfect surfaces and materials that can themselves resist corrosion by KOH.[18]

Potassium hydroxide is often the main active ingredient in chemical "cuticle removers" used in manicure treatments.

Because aggressive bases like KOH damage the cuticle of the hair shaft, potassium hydroxide is used to chemically assist the removal of hair from animal hides. The hides are soaked for several hours in a solution of KOH and water to prepare them for the unhairing stage of the tanning process. This same effect is also used to weaken human hair in preparation for shaving. Pre-shave products and some shave creams contain potassium hydroxide to force open the hair cuticle and to act as a hygroscopic agent to attract and force water into the hair shaft, causing further damage to the hair. In this weakened state, the hair is more easily cut by a razor blade.

Potassium hydroxide is used to identify some species of fungi. A 3–5% aqueous solution of KOH is applied to the flesh of a mushroom and the researcher notes whether or not the color of the flesh changes. Certain species of gilled mushrooms, boletes, polypores, and lichens[19] are identified based on this color-change reaction.[20]

Petroleum refineries[edit]

Potassium hydroxide is also used in petroleum and natural gas refining for removal of organic acids and sulfur compounds.[21][22]

See also[edit]

References[edit]

  1. ^ a b Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 4-80. ISBN 0-8493-0486-5. 
  2. ^ a b c d e f http://chemister.ru/Database/properties-en.php?dbid=1&id=325
  3. ^ Seidell, Atherton; Linke, William F. (1952). [Google Books Solubilities of Inorganic and Organic Compounds]. Van Nostrand. Retrieved 2014-05-29. 
  4. ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN 0-618-94690-X. 
  5. ^ a b c Sigma-Aldrich Co., Potassium hydroxide. Retrieved on 2014-05-18.
  6. ^ a b c H. Schultz, G. Bauer, E. Schachl, F. Hagedorn, P. Schmittinger “Potassium Compounds” in Ullmann’s Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a22_039
  7. ^ Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  8. ^ Potassium hydroxide, SIDS Initial Assessment Report For SIAM 13. Bern, Switzerland, 6-9 November 2001. By Dr. Thaly LAKHANISKY. Date of last Update: February 2002
  9. ^ Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
  10. ^ W. W. Hartman, "p-Cresol", Org. Synth. ; Coll. Vol. 1: 175 
  11. ^ Römpp Chemie-Lexikon, 9th Ed. (in german)
  12. ^ James K. Drackley Glycerin as a potential feed ingredient for dairy cattle
  13. ^ K. Schumann, K. Siekmann “Soaps” in Ullmann’s Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a24_247
  14. ^ D. Berndt, D. Spahrbier, "Batteries" in Ullmann’s Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a03_343
  15. ^ "Toyota Prius Hybrid 2010 Model Emergency Response Guide". Toyota Motor Corporation. 2009. Archived from the original on 2011-10-29. 
  16. ^ Green, Margaret (January 1952). "A RAPID METHOD FOR CLEARING AND STAINING SPECIMENS FOR THE DEMONSTRATION OF BONE". The Ohio Journal of Science 52 (1): 31–33. Retrieved 20 November 2012. 
  17. ^ Thomas Eisner, For the Love of Insects, Harvard University Press 2003, p. 71
  18. ^ Römpp Chemie-Lexikon, 9th Ed. (in German)
  19. ^ Elix, J.A.; Stocker-Wörgötter, Elfie (2008). "Chapter 7: Biochemistry and secondary metabolites". In Nash III, Thomas H. Lichen Biology (2nd ed.). New York: Cambridge University Press. pp. 118–119. ISBN 978-0-521-69216-8. 
  20. ^ Testing Chemical Reactions at MushroomExpert.com
  21. ^ "Treatment processes in petroleum refining". eoearth.org. 2012. Retrieved April 26, 2012. 
  22. ^ "SpentCaustic.com Introduction To The Treatment of Spent Caustic". spentcaustic.com. 2010. Retrieved April 26, 2012. 

External links[edit]