Caveolin 3

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Caveolin 3
Identifiers
Symbols CAV3 ; LGMD1C; LQT9; VIP-21; VIP21
External IDs OMIM601253 MGI107570 HomoloGene7255 GeneCards: CAV3 Gene
RNA expression pattern
PBB GE CAV3 208204 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 859 12391
Ensembl ENSG00000182533 ENSMUSG00000062694
UniProt P56539 P51637
RefSeq (mRNA) NM_001234 NM_007617
RefSeq (protein) NP_001225 NP_031643
Location (UCSC) Chr 3:
8.78 – 8.88 Mb
Chr 6:
112.46 – 112.47 Mb
PubMed search [1] [2]

Caveolin-3 is a protein that in humans is encoded by the CAV3 gene.[1][2][3] Alternative splicing has been identified for this locus, with inclusion or exclusion of a differentially spliced intron. In addition, transcripts utilize multiple polyA sites and contain two potential translation initiation sites.

Function[edit]

This gene encodes a caveolin family member, which functions as a component of the caveolae plasma membranes found in most cell types. Caveolin proteins are proposed to be scaffolding proteins for organizing and concentrating certain caveolin-interacting molecules.[3]

Clinical significance[edit]

Mutations identified in this gene lead to interference with protein oligomerization or intra-cellular routing, disrupting caveolae formation and resulting in Limb-Girdle muscular dystrophy type-1C (LGMD-1C), HyperCKemia, distal myopathy or rippling muscle disease (RMD). Other mutations in Caveolin causes Long QT Syndrome or familial hypertrophic cardiomyopathy, although the role of Cav3 in Long QT syndrome has recently been disputed.[3][4]

Interactions[edit]

Caveolin 3 has been shown to interact with a range of different proteins, including, but not limited to:

Structure[edit]

Using transmission electron microscopy and single particle analysis methods, it has been shown that nine Caveolin-3 monomers assemble to form a complex that is toroidal in shape, ∼16.5 nm in diameter and ∼5.5 nm in height.[9]

Cardiac Physiology[edit]

Caveolin-3 is one of three isoforms of the protein caveolin.[10] Caveolin-3 is concentrated in the caveolae of myocytes, and modulates numerous metabolic processes including: nitric oxide synthesis, cholesterol metabolism, and cardiac myocytes contraction.[10][11][12] There are many proteins that associate with caveolin-3, including ion channels and exchangers.[10][13][14] Expression levels of caveolin-3 have been implicated in various cardiac-related pathologies.[15][16][17][18][19]

Associations with Ion Channels[edit]

ATP-Dependent Potassium Channels[edit]

In cardiac myocytes, caveolin-3 negatively regulates ATP-dependent potassium channels (KATP) localized in caveolae.[14] KATP channel opening decreases significantly when interacting with caveolin-3; other isoforms of caveolin do not show this type of effect on KATP channels. The amount of KATP activation during times of biological stress influences the amount of cellular damage that will occur, thus regulation of caveolin-3 expression during these times influences the amount of cellular damage.[14]

Sodium-Calcium Exchanger[edit]

Caveolin-3 associates with the cardiac sodium-calcium exchanger (NCX) in caveolae of cardiac myocytes.[10][20] This association occurs predominately in areas proximate to the peripheral membrane of cardiac myocytes.[20] Interactions between caveolin-3 and cardiac NCX influence NCX-regulation of cellular signaling factors and excitation of cardiac myocytes.[10]

L-Type Calcium Channel[edit]

Caveolin-3 influences the opening of L-Type calcium channels (LTCC) which play a role in cardiac myocyte contraction.[13] Disruption of interactions between caveolin-3 and its associated binding proteins has been shown to affect LTCC.[13] Specifically, disruption of caveolin-3 decreases the basal and b2-adrenergic-stimulated opening probabilities of LTCC.[13] This occurs by changing the PKA-mediated phosphorylation of caveolin-3-associated binding proteins, causing negative down-stream effects on LTCC activity.[13]

Implications in Disease[edit]

Alterations in caveolin-3 expression have been implicated in the altered expression and regulation of numerous signaling molecules involved in cardiomyopathies.[17] Disruption of caveolin-3 disturbs the structure of cardiac caveolae and blocks atrial natriuretic peptide (ANP) expression, a cardiac-related hormone involved in many functions including maintaining cellular homeostasis.[17][21] Normal caveolin-3 expression under conditions of stress increases cardiac cellular levels of ANP, maintaining cardiac homeostasis.[17] Mutations have been identified in the caveolin-3 gene that result in cardiomyopathies.[16] Several of these mutations influence caveolin-3 function by reducing the expression of its cell-surface domains.[15] Mutations resulting in loss-of-function of caveolin-3 cause cardiac myocyte hypertrophy, dilation of the heart, and depression of fractional shortening.[18][19] Knockout of caveolin-3 genes are sufficient to induce these manifestations.[21] Similarly, dominant-negative genotypes for caveolin-3 increase cardiac hypertrophy, whereas increased expression of caveolin-3 inhibits the ability of the heart to hypertrophy, implicating caveolin-3 as a negative regulator of cardiac hypertrophy.[18][19] Overexpression of caveolin-3 leads to the development of cardiomyopathy, resulting in degeneration of cardiac tissue and manifesting pathologies due to the associated degeneration.[15]

References[edit]

  1. ^ McNally EM, de Sa Moreira E, Duggan DJ, Bonnemann CG, Lisanti MP, Lidov HG, Vainzof M, Passos-Bueno MR, Hoffman EP, Zatz M, Kunkel LM (August 1998). "Caveolin-3 in muscular dystrophy". Hum Mol Genet 7 (5): 871–7. doi:10.1093/hmg/7.5.871. PMID 9536092. 
  2. ^ Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonte D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F (April 1998). "Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy". Nat Genet 18 (4): 365–8. doi:10.1038/ng0498-365. PMID 9537420. 
  3. ^ a b c "Entrez Gene: CAV3 caveolin 3". 
  4. ^ Hedley PL, Kanters JK, Dembic M, Jespersen T, Skibsbye L, Aidt FH, Eschen O, Graff C, Behr ER, Schlamowitz S, Corfield V, McKenna WJ, Christiansen M (2013). "The Role of CAV3 in Long-QT Syndrome: Clinical and Functional Assessment of a Caveolin-3/Kv11.1 Double Heterozygote Versus Caveolin-3 Single Heterozygote". Circ Cardiovasc Genet 6 (5): 452–61. doi:10.1161/CIRCGENETICS.113.000137. PMID 24021552. 
  5. ^ Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioce P, Sargiacomo M, Bricarelli FD, Minetti C, Sudol M, Lisanti MP (December 2000). "Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members". J. Biol. Chem. 275 (48): 38048–58. doi:10.1074/jbc.M005321200. PMID 10988290. 
  6. ^ Matsuda C, Hayashi YK, Ogawa M, Aoki M, Murayama K, Nishino I, Nonaka I, Arahata K, Brown RH (August 2001). "The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle". Hum. Mol. Genet. 10 (17): 1761–6. doi:10.1093/hmg/10.17.1761. PMID 11532985. 
  7. ^ Couet J, Sargiacomo M, Lisanti MP (November 1997). "Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities". J. Biol. Chem. 272 (48): 30429–38. doi:10.1074/jbc.272.48.30429. PMID 9374534. 
  8. ^ Whiteley G, Collins RF, Kitmitto A (November 2012). "Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor". J. Biol. Chem. 287 (48): 40302–16. doi:10.1074/jbc.M112.377085. PMC 3504746. PMID 23071107. 
  9. ^ Whiteley, G; Collins, RF; Kitmitto, A (Nov 23, 2012). "Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor.". The Journal of Biological Chemistry 287 (48): 40302–16. doi:10.1074/jbc.M112.377085. PMC 3504746. PMID 23071107. 
  10. ^ a b c d e Bossuyt, J., Taylor, B., James-Kracke, M., & Hale, C. (2002). Evidence for cardiac sodium-calcium exchanger association with caveolin-3. Federation of European Biochemical Societies, 511, 113-117.
  11. ^ Gazzerro, E., Sotgia, F., Bruno, C., Lisanti, M., & Minetti, C. (2010). Caveolinopathies: from the biology of caveolin-3 to human diseases. European Journal of Human Genetics, 18, 137-145.
  12. ^ Gratton,J., Bernatchez, P., & Sessa, W. (2004). Caveolae And Caveolins In The Cardiovascular System. Circulation Research, 94(11), 1408-1417.
  13. ^ a b c d e Bryant, S., Kimura, T., Kong, C., Watson, J., Chase, A., Suleiman, M. S., et al. (2014). Stimulation of Ica by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes. Journal of Molecular and Cellular Cardiology, 68, 47-55.
  14. ^ a b c Garg, V., Sun, W., & Hi, K. (2009). Caveolin-3 negatively regulated cardiac KATP channels. Biochemical and Biophysical Research Communications, 385, 472-477.
  15. ^ a b c Arvamudan, B., Volonte, D., Ramani, R., Gursoy, E., Lisanti, M., London, B., et al. (2003). Transgenic over expression of cave-in-3 in heart induces a cardiomyopathic phenotype. Human Molecular Genetics, 12(21), 2777-2788.
  16. ^ a b Hayashi, T., Arimura, T., Yasunami, M., Kimura, A., Ueda, K., Shibata, H., et al. (2004). Identification and functional analysis of a cave-in-3 mutation associated with familial hypertrophic cardiomyopathy. Biochemical and Biophysical Research Communications, 313, 178-184.
  17. ^ a b c d Horikawa, Y., Panneerselvam, M., Vallon, V., Insel, P., Patel, H., Roth, D., et al. (2011). Cardiac-specific over expression of caveolin-3 attenuates cardiac hypertrophy and increases natriuretic peptide expression and signaling. Journal of the American College of Cardiology, 57, 2273-2283.
  18. ^ a b c Koga, A., Oka, N., Kikuchi, T., Miyazaki, H., Kato, S., & Imaizumi, T. (2003). Adenovirus-mediated over expression of caveolin-3 inhibits rate cardiomyocyte hypertrophy. Hypertension, 42, 213-219.
  19. ^ a b c Woodman, S., Park, D., Cohen, A., Cheung, M., Chandra, A., Shirani, J., et al. (2002) Caveolin-3 knock-out mice develop progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. Journal of Biological Chemistry, 277(3), 38988-38997 . 
  20. ^ a b Lin, E., Hung, V., Kashihara, H., Dan, P., & Tibbits, G. (2009). Distribution patterns of the Na-Ca exchanger and cave-in-3 in developing rabbit cardiomyocytes. Cell Calcium, 45, 369-383.
  21. ^ a b Nakajima,K., Nobori, T., Isaka, N., Ito, M., Yamanaka, T., Kurita, T., et al. (2005).Effects Of Human Atrial Natriuretic Peptide On Cardiac Function And Hemodynamics In Patients With High Plasma BNP Levels. International Journal of Cardiology, 104(3), 332-337.

Further reading[edit]

  • Figarella-Branger D, Pouget J, Bernard R et al. (2004). "Limb-girdle muscular dystrophy in a 71-year-old woman with an R27Q mutation in the CAV3 gene". Neurology 61 (4): 562–4. doi:10.1212/01.wnl.0000076486.57572.5c. PMID 12939441. 
  • Woodman SE, Sotgia F, Galbiati F et al. (2005). "Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases". Neurology 62 (4): 538–43. doi:10.1212/wnl.62.4.538. PMID 14981167. 
  • Li S, Okamoto T, Chun M et al. (1995). "Evidence for a regulated interaction between heterotrimeric G proteins and caveolin". J. Biol. Chem. 270 (26): 15693–701. doi:10.1074/jbc.270.26.15693. PMID 7797570. 
  • Tang Z, Scherer PE, Okamoto T et al. (1996). "Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle". J. Biol. Chem. 271 (4): 2255–61. doi:10.1074/jbc.271.4.2255. PMID 8567687. 
  • Scherer PE, Lisanti MP (1997). "Association of phosphofructokinase-M with caveolin-3 in differentiated skeletal myotubes. Dynamic regulation by extracellular glucose and intracellular metabolites". J. Biol. Chem. 272 (33): 20698–705. doi:10.1074/jbc.272.33.20698. PMID 9252390. 
  • Venema VJ, Ju H, Zou R, Venema RC (1997). "Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain". J. Biol. Chem. 272 (45): 28187–90. doi:10.1074/jbc.272.45.28187. PMID 9353265. 
  • Couet J, Sargiacomo M, Lisanti MP (1997). "Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities". J. Biol. Chem. 272 (48): 30429–38. doi:10.1074/jbc.272.48.30429. PMID 9374534. 
  • Biederer C, Ries S, Drobnik W, Schmitz G (1998). "Molecular cloning of human caveolin 3". Biochim. Biophys. Acta 1406 (1): 5–9. doi:10.1016/S0925-4439(97)00095-1. PMID 9545514. 
  • Yamamoto M, Toya Y, Schwencke C et al. (1998). "Caveolin is an activator of insulin receptor signaling". J. Biol. Chem. 273 (41): 26962–8. doi:10.1074/jbc.273.41.26962. PMID 9756945. 
  • Sotgia F, Minetti C, Lisanti MP (1999). "Localization of the human caveolin-3 gene to the D3S18/D3S4163/D3S4539 locus (3p25), in close proximity to the human oxytocin receptor gene. Identification of the caveolin-3 gene as a candidate for deletion in 3p-syndrome". FEBS Lett. 452 (3): 177–80. doi:10.1016/S0014-5793(99)00658-4. PMID 10386585. 
  • Carbone I, Bruno C, Sotgia F et al. (2000). "Mutation in the CAV3 gene causes partial caveolin-3 deficiency and hyperCKemia". Neurology 54 (6): 1373–6. doi:10.1212/wnl.54.6.1373. PMID 10746614. 
  • Biederer CH, Ries SJ, Moser M et al. (2000). "The basic helix-loop-helix transcription factors myogenin and Id2 mediate specific induction of caveolin-3 gene expression during embryonic development". J. Biol. Chem. 275 (34): 26245–51. doi:10.1074/jbc.M001430200. PMID 10835421. 
  • Sotgia F, Lee JK, Das K et al. (2001). "Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members". J. Biol. Chem. 275 (48): 38048–58. doi:10.1074/jbc.M005321200. PMID 10988290. 
  • Herrmann R, Straub V, Blank M et al. (2001). "Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy". Hum. Mol. Genet. 9 (15): 2335–40. doi:10.1093/oxfordjournals.hmg.a018926. PMID 11001938. 
  • Hagiwara Y, Sasaoka T, Araishi K et al. (2001). "Caveolin-3 deficiency causes muscle degeneration in mice". Hum. Mol. Genet. 9 (20): 3047–54. doi:10.1093/hmg/9.20.3047. PMID 11115849. 
  • de Paula F, Vainzof M, Bernardino AL et al. (2001). "Mutations in the caveolin-3 gene: When are they pathogenic?". Am. J. Med. Genet. 99 (4): 303–7. doi:10.1002/1096-8628(2001)9999:9999<::AID-AJMG1168>3.0.CO;2-O. PMID 11251997. 
  • Betz RC, Schoser BG, Kasper D et al. (2001). "Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease". Nat. Genet. 28 (3): 218–9. doi:10.1038/90050. PMID 11431690. 
  • Matsuda C, Hayashi YK, Ogawa M et al. (2002). "The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle". Hum. Mol. Genet. 10 (17): 1761–6. doi:10.1093/hmg/10.17.1761. PMID 11532985.