Character (mathematics)

From Wikipedia, the free encyclopedia
  (Redirected from Character (group theory))
Jump to: navigation, search

In mathematics, a character is (most commonly) a special kind of function from a group to a field (such as the complex numbers). There are at least two distinct, but overlapping meanings. Other uses of the word "character" are almost always qualified.

Multiplicative character[edit]

A multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field (Artin 1966), usually the field of complex numbers. If G is any group, then the set Ch(G) of these morphisms forms an abelian group under pointwise multiplication.

This group is referred to as the character group of G. Sometimes only unitary characters are considered (thus the image is in the unit circle); other such homomorphisms are then called quasi-characters. Dirichlet characters can be seen as a special case of this definition.

Multiplicative characters are linearly independent, i.e. if \chi_1,\chi_2, \ldots , \chi_n are different characters on a group G then from a_1\chi_1+a_2\chi_2 + \ldots + a_n \chi_n = 0 it follows that a_1=a_2=\cdots=a_n=0 .

Character of a representation[edit]

Main article: Character theory

The character of a representation φ of a group G on a finite-dimensional vector space V over a field F is the trace of the representation φ (Serre 1977). In general, the trace is not a group homomorphism, nor does the set of traces form a group. The characters of one-dimensional representations are identical to one-dimensional representations, so the above notion of multiplicative character can be seen as a special case of higher-dimensional characters. The study of representations using characters is called "character theory" and one dimensional characters are also called "linear characters" within this context.

See also[edit]

References[edit]

External links[edit]