Product (chemistry)

From Wikipedia, the free encyclopedia
  (Redirected from Chemical products)
Jump to: navigation, search

Products are the species formed from chemical reactions.[1] During a chemical reaction reagents are transformed into products after passing through a high energy transition state. This process results in the consumption of the reagents, and can be mediated by catalysts which lower the energy of the transition state, and by solvents which provide the chemical environment necessary for the reaction to take place. When represented in chemical equations products are by convention drawn on the right-hand side, even in the case of reversible reactions.[2] The properties of products such as their energies help determine several characteristics of a chemical reaction such as whether the reaction is exergonic or endergonic. Additionally the properties of a product can make it easier to extract and purify following a chemical reaction, especially if the product has a different state of matter than the reactants.

Much of chemistry research is focused on the synthesis and characterization of beneficial products, as well as the detection and removal of undesirable products. Synthetic chemists can be subdivided into research chemists who design new chemicals and pioneer new methods for synthesizing chemicals, as well as process chemists who scale up chemical production and make it safer, more environmentally sustainable, and more efficient.[3] Other fields include natural product chemists who isolate products created by living organisms and then characterize and study these products.

Determination of reaction[edit]

The products of a chemical reaction influence several aspects of the reaction. If the products are lower in energy than the reactants, then the reaction will give off excess energy making it an exergonic reaction. Such reactions are thermodynamically favorable and tend to happen on their own. If the kinetics of the reaction are high enough, however, then the reaction may occur too slowly to be observed or not even occur at all. This is the case with the conversion of diamond to lower energy graphite at atmospheric pressure, in such a reaction diamond is considered metastable and will not be observed converting into graphite.[4][5]

If the products are higher in chemical energy than the reactants then the reaction will require energy to be performed and is therefore an endergonic reaction. Additionally if the product is less stable than a reactant, then Leffler's assumption holds that the transition state will more closely resemble the product than the reactant.[6] Sometimes the product will differ significantly enough from the reactant that it is easily purified following the reaction such as when a product is insoluble and precipitates out of solution while the reactants remained dissolved.

Study[edit]

Ever since the mid nineteenth century chemists have been increasingly preoccupied with synthesizing chemical products.[7] Disciplines focused on isolation and characterization of products, such as natural products chemists, remain important to the field, and the combination of their contributions alongside synthetic chemists has resulted in much of the framework through which chemistry is understood today.[7]

Much of synthetic chemistry is concerned with the synthesis of new chemicals as occurs in the design and creation of new drugs, as well as the discovery of new synthetic techniques. Beginning in the early 2000s though process chemistry began emerging as a distinct field of synthetic chemistry focused on scaling up chemical synthesis to industrial levels, as well as finding ways to make these processes more efficient, safer, and environmentally responsible.[3]

References[edit]

  1. ^ McNaught, A. D.; Wilkinson, A. (2006). "[product] Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")". IUPAC. Blackwell Scientific Publications, Oxford. doi:10.1351/goldbook. Retrieved 10 September 2014. 
  2. ^ McNaught, A. D.; Wilkinson, A. (2006). "[chemical reaction equation] Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")". IUPAC. Blackwell Scientific Publications, Oxford. doi:10.1351/goldbook. Retrieved 10 September 2014. 
  3. ^ a b Henry, Celia M. "DRUG DEVELOPMENT". Chemical and Engineering News. Retrieved 13 September 2014. 
  4. ^ McNaught, A. D.; Wilkinson, A. (2006). "[diamond] Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")". IUPAC. Blackwell Scientific Publications, Oxford. doi:10.1351/goldbook. Retrieved 10 September 2014. 
  5. ^ McNaught, A. D.; Wilkinson, A. (2006). "[metastability] Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")". IUPAC. Blackwell Scientific Publications, Oxford. doi:10.1351/goldbook. Retrieved 10 September 2014. 
  6. ^ McNaught, A. D.; Wilkinson, A. (2006). "[metastability] Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")". IUPAC. Blackwell Scientific Publications, Oxford. doi:10.1351/goldbook. Retrieved 10 September 2014. 
  7. ^ a b Yeh, Brian J; Lim, Wendell A (2007). "Synthetic biology: lessons from the history of synthetic organic chemistry". Nature Chemical Biology (3): 521 – 525. doi:10.1038/nchembio0907-521. Retrieved 13 September 2014. 

See also[edit]