Chlorogenic acid

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Chlorogenic acid
Chlorogenic acid
CAS number 327-97-9 YesY
PubChem 1794427
ChemSpider 1405788 YesY
RTECS number GU8480000
Jmol-3D images Image 1
Molecular formula C16H18O9
Molar mass 354.31 g mol−1
Density 1.28 g/cm3
Melting point 207 to 209 °C (405 to 408 °F; 480 to 482 K)
MSDS External MSDS
R-phrases -
S-phrases S24 S25 S28 S37 S45
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity (yellow): no hazard code Special hazards (white): no codeNFPA 704 four-colored diamond
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N (verify) (what is: YesY/N?)
Infobox references

Chlorogenic acid (CGA) is a natural chemical compound which is the ester of caffeic acid and (-)-quinic acid. It is an important biosynthetic intermediate.[1] Chlorogenic acid is an important intermediate in lignin biosynthesis. This compound, known as an antioxidant, may also slow the release of glucose into the bloodstream after a meal.[2]

The term chlorogenic acids can also refer to a related family of esters of hydroxycinnamic acids (caffeic acid, ferulic acid and p-coumaric acid) with quinic acid.[3]

Chlorogenic acids contain no chlorine. The name comes from the Greek χλωρός (light green) and -γένος (a suffix meaning "giving rise to"), because of the green color produced when chlorogenic acids are oxidized.

Chemical properties[edit]

Structurally, chlorogenic acid is the ester formed between caffeic acid and L-quinic acid.[4]

Isomers of chlorogenic acid include 4-O-caffeoylquinic acid (cryptochlorogenic acid or 4-CQA), 5-O-caffeoylquinic acid (neochlorogenic acid or 5-CQA). The epimer at position 1 has not yet been reported.[3]

Isomers containing two caffeic acid molecules are called isochlorogenic acid. It can be found in coffee.[5] There are several isomers such as 3,4-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid[6] Cynarine (1,5-dicaffeoylquinic acid) is an other isomer with two caffeic acid molecules..

Chlorogenic acid UV vis spectrum with a maximum of absorbance at 325 nm

Chlorogenic acid is freely soluble in ethanol and acetone.

Natural occurrences[edit]

Isomers of chlorogenic acid are found in potatoes.[7]

Chlorogenic acid can be found in bamboo Phyllostachys edulis.[8] as well as in many other plants.[9] It is one of the major phenolic compounds identified in peach[10] and in prunes.[11] It also is one of the phenols found in green coffee bean extract.[12]

Chlorogenic acid, its 3-O-glucoside, 3-O-galactoside and 3-O-arabinoside can be found in the shoots of Calluna vulgaris (heather).[13]

Food additive[edit]

Chlorogenic acid is marketed under the tradename Svetol, a standardized green coffee extract, as a food additive used in coffee products, chewing gum, and mints, and also as a stand-alone product. Dried sunflower leaves collected immediately after opening are processed into 98.38% chlorogenic acid extract and marketed in Bulgaria under the name of "Yamiagra"or "Yummyiagra".

Biological effects[edit]

A review article describes chlorogenic acid as having antihypertensive effects.[14]

Chlorogenic acid is reported to be a chemical sensitizer responsible for human respiratory allergy to certain types of plant materials.[15]

It could be involved in the laxative effect observed in prunes.[11]

One study showed that chlorogenic acid may have weak psychostimulant effects in mice.[16]

Another study showed chlorogenic acid to have a protective effect in neuroinflammatory conditions on dopaminergic neurons.[17]


  1. ^ Boerjan, Wout; Ralph, John; Baucher, Marie (2003). "Lignin biosynthesis". Annu. Rev. Plant Biol. 54: 519–46. doi:10.1146/annurev.arplant.54.031902.134938. PMID 14503002. 
  2. ^ Johnston, K. L.; Clifford, M. N.; Morgan, L. M. (October 2003). "Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine". Am. J. Clin. Nutrit. 78 (4): 728–733. PMID 14522730. 
  3. ^ a b Clifford, M. N.; Johnston, K. L.; Knigh, S.; Kuhnert, N. (2003). "Hierarchical Scheme for LC-MSn Identification of Chlorogenic Acids". Journal of Agricultural and Food Chemistry 51 (10): 2900–2911. doi:10.1021/jf026187q. PMID 12720369. 
  4. ^ Clifford, M. N. (1999). "Chlorogenic acids and other cinnamates – nature, occurrence and dietary burden". J. Sci. Food Agr. 79 (3): 362–372. doi:10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D. 
  5. ^ Isochlorogenic Acid. Isolation from Coffee and Structure Studies. H. M. Barnes, J. R. Feldman and W. V. White, J. Am. Chem. Soc., 1950, volume 72, issue 9, pages 4178–4182, doi:10.1021/ja01165a095
  6. ^ Corse, J.; Lundin, R. E.; Waiss, A. C. (May 1965). "Identification of several components of isochlorogenic acid". Phytochem. 4 (3): 527–529. doi:10.1016/S0031-9422(00)86209-3. 
  7. ^ Mendel Friedman (1997). "Chemistry, Biochemistry, and Dietary Role of Potato Polyphenols. A Review". Journal of Agricultural and Food Chemistry 45 (5): pp 1523–1540. doi:10.1021/jf960900s. 
  8. ^ Kweon, Mee-Hyang; Hwang, Han-Joon; Sung, Ha-Chin (2001). "Identification and Antioxidant Activity of Novel Chlorogenic Acid Derivatives from Bamboo (Phyllostachys edulis)". Journal of Agricultural and Food Chemistry 49 (20): 4646–46552. doi:10.1021/jf010514x. 
  9. ^ Clifford, M. N. (2003). "14. The analysis and characterization of chlorogenic acids and other cinnamates". In C. Santos-Buelga & G. Williamson (Eds.). Methods in Polyphenol Analysis. Cambridge: Royal Society of Chemistry. pp. 314–337. ISBN 0-85404-580-5. 
  10. ^ Cheng, G. W.; Crisosto, C. H. (September 1995). "Browning Potential, Phenolic Composition, and Polyphenoloxidase Activity of Buffer Extracts of Peach and Nectarine Skin Tissue". J. Amer. Soc. Hort. Sci. 120 (5): 835–838. 
  11. ^ a b Stacewicz-Sapuntzakis, M; Bowen, PE; Hussain, EA; Damayanti-Wood, BI; Farnsworth, NR (2001). "Chemical composition and potential health effects of prunes: a functional food?". Crit. Rev. Food Sci. Nutr. 41 (4): 251–86. doi:10.1080/20014091091814. PMID 11401245. 
  12. ^ Igho Onakpoya, Rohini Terry, and Edzard Ernst (2010). "The Use of Green Coffee Extract as a Weight Loss Supplement: A Systematic Review and Meta-Analysis of Randomised Clinical Trials". Complementary Medicine: 1. 
  13. ^ Jalal, Mahbubul A.F.; Read, David J.; Haslam, E. (1982). "Phenolic composition and its seasonal variation in Calluna vulgaris". Phytochem. 21 (6): 1397–1401. doi:10.1016/0031-9422(82)80150-7. 
  14. ^ Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. (2011). "Antihypertensive effects and mechanisms of chlorogenic acids.". Hypertens Res. 35 (4): 370–4. doi:10.1038/hr.2011.195. PMID 22072103. 
  15. ^ Freedman, Samuel O.; Shulman, Robert; Krupey, John; Sehon, A.H. (1964). "Antigenic properties of chlorogenic acid". J. Allergy 35 (2): 97–107. doi:10.1016/0021-8707(64)90023-1. 
  16. ^ "Effects of chlorogenic acid and its metabolites on spontaneous locomotor activity in mice.". Biosci Biotechnol Biochem 70 (10): 2560–3. 2006. PMID 17031047. 
  17. ^ "Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons.". Brain Res Bull 88 (5): 487–94. 2012. doi:10.1016/j.brainresbull.2012.04.010. PMID 22580132.