Choline transporter

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Solute carrier family 5 (choline transporter), member 7
Identifiers
Symbols SLC5A7 ; CHT; CHT1; HMN7A; hCHT
External IDs OMIM608761 HomoloGene32516 IUPHAR: 914 GeneCards: SLC5A7 Gene
Orthologs
Species Human Mouse
Entrez 60482 63993
Ensembl ENSG00000115665 ENSMUSG00000023945
UniProt Q9GZV3 Q8BGY9
RefSeq (mRNA) NM_021815 NM_022025
RefSeq (protein) NP_068587 NP_071308
Location (UCSC) Chr 2:
108.6 – 108.63 Mb
Chr 17:
54.27 – 54.3 Mb
PubMed search [1] [2]

The high-affinity choline transporter (ChT) also known as solute carrier family 5 member 7 is a protein in humans that is encoded by the SLC5A7 gene.[1] It is a plasmalemmal transporter and carries choline into acetylcholine-synthesizing neurons.

Hemicholinium-3 is an inhibitor of the ChT and can be used to deplete acetylcholine stores, while coluracetam is an enhancer of the ChT and can increase cholinergic neurotransmission by enhancing acetylcholine synthesis.

Function[edit]

Choline is a direct precursor of acetylcholine (ACh), a neurotransmitter of the central and peripheral nervous system that regulates a variety of autonomic, cognitive, and motor functions. SLC5A7 is a Na(+)- and Cl(-)- dependent high-affinity transporter that mediates the uptake of choline for acetylcholine synthesis in cholinergic neurons.[1][2]

Mutations in the SLC5A7 gene have been associated with Distal spinal muscular atrophy with vocal cord paralysis (distal hereditary motor neuropathy type 7A).[3]

Model organisms[edit]

Model organisms have been used in the study of SLC5A7 function. A conditional knockout mouse line called Slc5a7tm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[4] Male and female animals underwent a standardized phenotypic screen[5] to determine the effects of deletion.[6][7][8][9] Additional screens performed: - In-depth immunological phenotyping[10]

See also[edit]

References[edit]

  1. ^ a b "Entrez Gene: Solute carrier family 5 (choline transporter), member 7". 
  2. ^ Apparsundaram S, Ferguson SM, George AL, Blakely RD (October 2000). "Molecular cloning of a human, hemicholinium-3-sensitive choline transporter". Biochem. Biophys. Res. Commun. 276 (3): 862–7. doi:10.1006/bbrc.2000.3561. PMID 11027560. 
  3. ^ Barwick, K. E. S.; Wright, J.; Al-Turki, S.; McEntagart, M. M.; Nair, A.; Chioza, B.; Al-Memar, A.; Modarres, H.; Reilly, M. M.; Dick, K. J.; Ruggiero, A. M.; Blakely, R. D.; Hurles, M. E.; Crosby, A. H. (2012). "Defective Presynaptic Choline Transport Underlies Hereditary Motor Neuropathy". The American Journal of Human Genetics 91 (6): 1103. doi:10.1016/j.ajhg.2012.09.019.  edit
  4. ^ Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Opthalmologica 88: 925-7.doi:10.1111/j.1755-3768.2010.4142.x: Wiley. 
  5. ^ a b "International Mouse Phenotyping Consortium". 
  6. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V et al. (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337â€"42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750. 
  7. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  8. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell 128 (1): 9â€"13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  9. ^ White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN et al. (2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMID 23870131. 
  10. ^ a b "Infection and Immunity Immunophenotyping (3i) Consortium". 

This article incorporates text from the United States National Library of Medicine, which is in the public domain.