Nootropic

From Wikipedia, the free encyclopedia
  (Redirected from Cognitive enhancement)
Jump to: navigation, search

Nootropics (/n.əˈtrɒpɨks/ noh-ə-TROP-iks), also referred to as smart drugs, memory enhancers, neuro enhancers, cognitive enhancers, and intelligence enhancers, are drugs, supplements, nutraceuticals, and functional foods that purportedly improve mental functions such as cognition, memory, intelligence, motivation, attention, and concentration.[1][2] The word nootropic was coined in 1972 by the Romanian Dr. Corneliu E. Giurgea,[3][4] derived from the Greek words νους nous, or "mind," and τρέπειν trepein meaning to bend or turn. Nootropics are thought to work by altering the availability of the brain's supply of neurochemicals (neurotransmitters, enzymes, and hormones), by improving the brain's oxygen supply, or by stimulating nerve growth.

Availability and prevalence

At present, there are several drugs on the market that improve memory, concentration, and planning, and reduce impulsive behavior. Many more are in different stages of development.[5] The most commonly used class of drug is stimulants.[6]

These drugs are used primarily to treat people with cognitive or motor function difficulties attributable to such disorders as Alzheimer's disease, Parkinson's disease, Huntington's disease and ADHD. However, more widespread use is being recommended by some researchers.[7] These drugs have a variety of human enhancement applications as well, and are marketed heavily on the Internet. Nevertheless, intense marketing may not correlate with efficacy; while scientific studies support the beneficial effects of some compounds, the marketing claims by manufacturers of over-the-counter products are not formally tested.

Academic doping

Main article: Academic doping

In academia, modafinil has been used to increase productivity, although its long-term effects have not been assessed in healthy individuals.[5] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[5] One survey found that 7% of students had used stimulants for a cognitive edge, and on some campuses use in the past year is as high as 25%.[6][8] The use of prescription stimulants is especially prevalent among students attending academically competitive colleges and students who are members of a fraternity or sorority.[8]

Surveys suggest that 3–11% of American students and 0.7–4.5% of German students have used cognitive enhancers in their lifetime.[9][10]

Several factors positively and negatively influence the use of drugs to increase cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[9][10][11][12]

Hazards

The main concern with pharmaceutical drugs is adverse effects, and these concerns apply to cognitive-enhancing drugs as well. Cognitive enhancers are often taken for the long-term when little data is available.[5] While certain racetam compounds are suspected to have nootropic qualities, few side-effects, and a wide therapeutic window (low overdose risk),[13] other cognitive enhancers may be associated with a high incidence of adverse effects or a narrower therapeutic window (higher overdose risk). While addiction to stimulants is sometimes asserted to be a cause for concern,[14] a very large body of research on the therapeutic use of the "more addictive" psychostimulants indicate that addiction is fairly rare in therapeutic doses.[15][16][17]

In the United States, unapproved drugs or dietary supplements do not require safety or efficacy approval before being sold.[18]

Drugs

Vitamins and supplements

  • B Vitamins – may influence cognitive function through an effect on methylation and homocysteine levels, as excess homocysteine has been associated with cognitive impairment and the B vitamins work to reduce homocysteine.[19] A 2008 systematic review of trials found "little evidence of a beneficial impact" from supplements on cognitive function later in life.[20]
  • Phosphatidylserine (a phospholipid) with DHA and EPA (omega-3 fatty acids) – concurrent supplemental use can protect and potentially improve brain function.[21][22] DHA and EPA are compounds that support brain function and neurogenesis, especially during brain development.[23] A review of literature and a more recent randomized controlled trial on supplemental phosphatidylserine with DHA and EPA indicate that there are clinical benefits for those with ADHD,[21][22] in addition to a range of other clinical applications.[21] However, Cochrane Collaboration reviews on the use of supplemental omega-3 fatty acids alone (without phosphatidylserine) indicate that there is limited evidence of treatment benefits for individuals with ADHD[24] or other learning disorders.[25] A Norwegian study demonstrated a potential link between Omega-3 consumption during pregnancy and child intelligence test scores.[26][27]
  • Vitamin D – has positive effects on cardiovascular health and may have positive effects on cognitive function separately; the active form of Vitamin D seems to be involved in brain development and in adult brain function. In particular, metabolic pathways for Vitamin D in the hippocampus and cerebellum have been found. Epidemiological data show that higher Vitamin D levels (>20 ng/mL or 50 nmol/L) are associated with better cognitive function, but do not seem to be associated with better memory performance.[28] Vitamin D has also been shown to be necessary in the production of dopamine.[29]

Stimulants

Stimulants are often seen as smart drugs, but may be more accurately termed productivity enhancers. These typically improve concentration and a few areas of cognitive performance, but only while the drug is still in the blood at therapeutic concentrations.

Miscellaneous

Nutraceuticals

Racetams

The racetams are structurally similar compounds, such as pramiracetam, oxiracetam, coluracetam, and aniracetam, which are often marketed as cognitive enhancers and sold over-the-counter. Racetams are often referred to as nootropics, but this property of the drug class is not well established.[49] The racetams have a poorly understood mechanisms of action; however, piracetam and aniracetam are known to act as positive allosteric modulators of AMPA receptors and appear to modulate cholinergic systems.[50]

See also

References

  1. ^ "Dorlands Medical Dictionary". Archived from the original on January 30, 2008. 
  2. ^ Lanni C, Lenzken SC, Pascale A, et al. (March 2008). "Cognition enhancers between treating and doping the mind". Pharmacol. Res. 57 (3): 196–213. doi:10.1016/j.phrs.2008.02.004. PMID 18353672. 
  3. ^ Gazzaniga, Michael S. (2006). The Ethical Brain: The Science of Our Moral Dilemmas (P.S.). New York, N.Y: Harper Perennial. p. 184. ISBN 0-06-088473-8. 
  4. ^ Giurgea C (1972). "[Pharmacology of integrative activity of the brain. Attempt at nootropic concept in psychopharmacology] ("Vers une pharmacologie de l'active integrative du cerveau: Tentative du concept nootrope en psychopharmacologie")". Actual Pharmacol (Paris) (in French) 25: 115–56. PMID 4541214. 
  5. ^ a b c d Sahakian B; Morein-Zamir S (December 2007). "Professor's little helper". Nature 450 (7173): 1157–9. Bibcode:2007Natur.450.1157S. doi:10.1038/4501157a. PMID 18097378. 
  6. ^ a b Greely, Henry; Sahakian, Barbara; Harris, John; Kessler, Ronald C.; Gazzaniga, Michael; Campbell, Philip; Farah, Martha J. (December 10, 2008). "Towards responsible use of cognitive-enhancing drugs by the healthy". Nature (Nature Publishing Group) 456 (7223): 702–705. Bibcode:2008Natur.456..702G. doi:10.1038/456702a. ISSN 1476-4687. OCLC 01586310. Retrieved March 25, 2014. (subscription required (help)). 
  7. ^ "Smart Drugs and Should We Take Them?". Dolan DNA Learning Center. Retrieved November 4, 2012. 
  8. ^ a b McCabe, Sean Esteban; Knight, John R.; Teter, Christian J.; Wechsler, Henry (January 1, 2005). "Non-medical use of prescription stimulants among US college students: prevalence and correlates from a national survey". Addiction 100 (1): 96–106. doi:10.1111/j.1360-0443.2005.00944.x. PMID 15598197. Retrieved August 15, 2013. 
  9. ^ a b Sattler, S.; Sauer, C.; Mehlkop, G.; Graeff, P. (2013). "The Rationale for Consuming Cognitive Enhancement Drugs in University Students and Teachers". PLoS ONE 8 (7): e68821. doi:10.1371/journal.pone.0068821.  edit
  10. ^ a b Sattler, Sebastian; Wiegel, Constantin (February 25, 2013). "Cognitive Test Anxiety and Cognitive Enhancement: The Influence of Students’ Worries on Their Use of Performance-Enhancing Drugs". Substance Use & Misuse (Informa Healthcare New York) 48 (3): 220–232. doi:10.3109/10826084.2012.751426. Retrieved April 5, 2014. 
  11. ^ Sattler, Sebastian; Mehlkop, Guido; Graeff, Peter; Sauer, Carsten (February 1, 2014). "Evaluating the drivers of and obstacles to the willingness to use cognitive enhancement drugs: the influence of drug characteristics, social environment, and personal characteristics". Substance Abuse Treatment, Prevention, and Policy 9 (1). BioMed Central Ltd. p. 8. doi:10.1186/1747-597X-9-8. ISSN 1747-597X. Retrieved April 5, 2014. 
  12. ^ Sattler, Sebastian; Forlini, Cynthia; Racine, Éric; Sauer, Carsten (August 5, 2013). "Impact of Contextual Factors and Substance Characteristics on Perspectives toward Cognitive Enhancement". PLOS ONE (PLOS) 8 (8): e71452. doi:10.1371/journal.pone.0071452. ISSN 1932-6203. LCCN 2006214532. OCLC 228234657. Retrieved April 5, 2014. 
  13. ^ Malik R, Sangwan A, Saihgal R, Jindal DP, Piplani P (2007). "Towards better brain management: nootropics". Curr. Med. Chem. 14 (2): 123–31. doi:10.2174/092986707779313408. PMID 17266573. 
  14. ^ Noble KA (December 2012). "Brain gain: adolescent use of stimulants for achievement". J. Perianesth. Nurs. 27 (6): 415–9. doi:10.1016/j.jopan.2012.09.001. PMID 23164208. 
  15. ^ Stolerman IP (2010). Stolerman IP, ed. Encyclopedia of Psychopharmacology. Berlin; London: Springer. p. 78. ISBN 9783540686989. 
  16. ^ Westfall DP, Westfall TC (2010). "Miscellaneous Sympathomimetic Agonists". In Brunton LL, Chabner BA, Knollmann BC. Goodman & Gilman's Pharmacological Basis of Therapeutics (12th ed.). New York: McGraw-Hill. ISBN 9780071624428. 
  17. ^ "Adderall XR Prescribing Information". United States Food and Drug Administration. December 2013. p. 11. Retrieved December 30, 2013. 
  18. ^ Goldman P (2001). "Herbal medicines today and the roots of modern pharmacology". Annals of Internal Medicine 135 (8 Pt 1): 594–600. doi:10.7326/0003-4819-135-8_Part_1-200110160-00010. PMID 11601931. 
  19. ^ Selhub J, Bagley L, Miller J, Rosenberg I (2000). "B vitamins, homocysteine, and neurocognitive function in the elderly". American Journal of Clinical Nutrition 71 (2): 614S–620s. PMID 10681269. 
  20. ^ Jia X, McNeill G, Avenell A (August 2008). "Does taking vitamin, mineral and fatty acid supplements prevent cognitive decline? A systematic review of randomized controlled trials". J Hum Nutr Diet 21 (4): 317–36. doi:10.1111/j.1365-277X.2008.00887.x. PMID 18721399. 
  21. ^ a b c Kidd PM (September 2007). "Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids". Altern Med Rev 12 (3): 207–27. PMID 18072818. 
  22. ^ a b Manor I, Magen A, Keidar D, Rosen S, Tasker H, Cohen T, Richter Y, Zaaroor-Regev D, Manor Y, Weizman A (July 2012). "The effect of phosphatidylserine containing Omega3 fatty-acids on attention-deficit hyperactivity disorder symptoms in children: a double-blind placebo-controlled trial, followed by an open-label extension". Eur. Psychiatry 27 (5): 335–42. doi:10.1016/j.eurpsy.2011.05.004. PMID 21807480. 
  23. ^ Sheila M. Innis (April 2007). "Dietary (n-3) fatty acids and brain development". The journal of nutrition 137 (4). 
  24. ^ Gillies D, Sinn JKh, Lad SS, Leach MJ, Ross MJ (2012). "Polyunsaturated fatty acids (PUFA) for attention deficit hyperactivity disorder (ADHD) in children and adolescents". Cochrane Database Syst Rev 7: CD007986. doi:10.1002/14651858.CD007986.pub2. PMID 22786509. 
  25. ^ Tan ML, Ho JJ, Teh KH (2012). "Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders". Cochrane Database Syst Rev 12: CD009398. doi:10.1002/14651858.CD009398.pub2. PMID 23235675. 
  26. ^ Pediatrics. 2003 Jan;111(1) e39–44
  27. ^ Prevention [0032-8006] Chillot yr.2004 vol.56 iss.1 pg. 122–129
  28. ^ Buell JS, Scott TM, Dawson-Hughes B, Dallal GE, Rosenberg IH, Folstein MF, Tucker KL (Aug 2009). "Vitamin D is associated with cognitive function in elders receiving home health services". J Gerontol a Biol Sci Med Sci. 64 (8): 888–95. doi:10.1093/gerona/glp032. PMC 2981461. PMID 19377013. 
  29. ^ Thomas H. J. Burne, PhD (May 2013). "vitamin d and the brain". http://chemistry.beloit.edu/Ordman/nutrition/aln13/1305lpi.htm. 
  30. ^ Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". J. Neurochem. 116 (2): 164–176. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468. 
  31. ^ a b Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 318. ISBN 9780071481274. "Therapeutic (relatively low) doses of psychostimulants, such as methylphenidate and amphetamine, improve performance on working memory tasks both in in normal subjects and those with ADHD. Positron emission tomography (PET) demonstrates that methylphenidate decreases regional cerebral blood flow in the doroslateral prefrontal cortex and posterior parietal cortex while improving performance of a spacial working memory task. This suggests that cortical networks that normally process spatial working memory become more efficient in response to the drug. ... [It] is now believed that dopamine and norepinephrine, but not serotonin, produce the beneficial effects of stimulants on working memory. At abused (relatively high) doses, stimulants can interfere with working memory and cognitive control ... stimulants act not only on working memory function, but also on general levels of arousal and, within the nucleus accumbens, improve the saliency of tasks. Thus, stimulants improve performance on effortful but tedious tasks ... through indirect stimulation of dopamine and norepinephrine receptors." 
  32. ^ a b Bidwell LC, McClernon FJ, Kollins SH (August 2011). "Cognitive enhancers for the treatment of ADHD". Pharmacol. Biochem. Behav. 99 (2): 262–274. doi:10.1016/j.pbb.2011.05.002. PMC 3353150. PMID 21596055. 
  33. ^ a b c Mereu M, Bonci A, Newman AH, Tanda G (October 2013). "The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders". Psychopharmacology (Berl.) 229 (3): 415–34. doi:10.1007/s00213-013-3232-4. PMID 23934211. 
  34. ^ Heishman SJ, Kleykamp BA, Singleton EG (June 2010). "Meta-analysis of the acute effects of nicotine and smoking on human performance". Psychopharmacology (Berl). 210 (4): 453–69. doi:10.1007/s00213-010-1848-1. PMC 3151730. PMID 20414766. Retrieved March 23, 2012. 
  35. ^ Rogers, P. (2007). "Caffeine, mood and mental performance in everyday life". Psychology Today 32 (1): 84–89. doi:10.1111/j.1467-3010.2007.00607.x. 
  36. ^ Kiefer, I. (2007). "Brain Food". Scientific American Mind 18 (5): 58–63. doi:10.1038/scientificamericanmind1007-58. Retrieved November 1, 2009. 
  37. ^ Naoi M, Maruyama W, Inaba-Hasegawa K (June 2013). "Revelation in the neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms". Expert Rev Neurother 13 (6): 671–84. doi:10.1586/ern.13.60. PMID 23739004. 
  38. ^ McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, Fuchs E (March 2010). "The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation". Mol. Psychiatry 15 (3): 237–49. doi:10.1038/mp.2009.80. PMC 2902200. PMID 19704408. "Cognitive deficits, such as an impairment of attention, memory and problem solving, have often been reported in patients with depressive disorders (69). Cognitive deficits and memory impairments in patients with depression may arise via disruption of the hypothalamic-pituitary adrenal (HPA) axis through hippocampal volume loss and changes in the amygdala. The magnitude of the hippocampal shrinkage reported in certain experimental conditions may partly underlie some of cognitive deficits that accompany major depression. Conversely, any prevention or restoration of these morphological changes in the hippocampus should be parallel to procognitive/promnesiant effects. Accordingly, tianeptine has particularly favorable effects on cognitive functions and the positive effect of tianeptine may be mediated through its upregulation of neurogenesis, but of course, the impact of neurogenesis on cognitive functions remains a matter of controversial debate.

    Tianeptine prevents and reverses stress-induced glucocorticoid-mediated dendritic remodeling in CA3 pyramidal neurons in the hippocampus (40,41) and stress-induced increases in dendritic length and branching in the amygdala (50). Tianeptine blocks the dendritic remodeling caused by stress or glucocorticoids (41), blocks stress-induced impairments of spatial memory performance in radial and Y-maze (70,71) and antagonizes the deleterious effects of alcohol (72).

    In a validated model of hippocampal-dependent memory impairment and synaptic plasticity changes by predator stress, acute tianeptine can prevent the deleterious effects of stress on spatial memory, an effect that does not depend on corticosterone levels (73). Tianeptine also facilitates focused attention behavior in the cat in response to its environment or towards a significant stimulus (74). It was shown to exert improving effects on learning as well as on working memory and on reference memory in rodents (72) and to exhibit vigilance-enhancing effects in rats (75) and monkeys (76)..."
     
  39. ^ Aguiar, Sebastian; Borowski, Thomas (Aug 2013). "Neuropharmacological review of the nootropic herb Bacopa monnieri.". Rejuvenation Research 16 (4): 313–26. doi:10.1089/rej.2013.1431. PMC 3746283. PMID 23772955. Retrieved March 27, 2014. 
  40. ^ Pase, Matthew P.; Kean, James; Sarris, Jerome; Neale, Chris; Scholey, Andrew B.; Stough, Con (July 2012). "The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials". The Journal of Alternative and Complementary Medicine 18 (7): 647–52. doi:10.1089/acm.2011.0367. PMID 22747190. Retrieved March 27, 2014. 
  41. ^ Morgan, A.; Stevens, J. (July 2010). "DoesBacopa monnieriImprove Memory Performance in Older Persons? Results of a Randomized, Placebo-Controlled, Double-Blind Trial". The Journal of Alternative and Complementary Medicine 16 (7): 753–759. doi:10.1089/acm.2009.0342. PMID 20590480. 
  42. ^ a b c d e f g Kennedy DO, Wightman EL (Jan 2011). "Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function". Adv Nutr. 2 (1): 32–50. doi:10.3945/an.110.000117. PMID 22211188. 
  43. ^ Kaschel R (2009). "Ginkgo biloba: specificity of neuropsychological improvement—a selective review in search of differential effects". Hum Psychopharmacol 24 (5): 345–70. doi:10.1002/hup.1037. PMID 19551805. 
  44. ^ Thorp, Aa; Sinn, N; Buckley, Jd; Coates, Am; Howe, Pr (Nov 2009). "Soya isoflavone supplementation enhances spatial working memory in men.". Br J Nutr (NLM) 102 (9): 1348–54. doi:10.1017/S0007114509990201. PMID 19480732. Retrieved March 24, 2014. 
  45. ^ Gleason CE, Carlsson CM, Barnet JH, Meade SA, Setchell KD, Atwood CS, Johnson SC, Ries ML, Asthana S (January 2009). "A preliminary study of the safety, feasibility and cognitive efficacy of soy isoflavone supplements in older men and women". Age Ageing 38 (1): 86–93. doi:10.1093/ageing/afn227. PMC 2720778. PMID 19054783. 
  46. ^ Kolotushkina EV, Moldavan MG, Voronin KY, Skibo GG (2003). "The influence of Hericium erinaceus extract on myelination process in vitro". Fiziol Zh 49 (1): 38–45. PMID 12675022. 
  47. ^ Mori K, Obara Y, Hirota M, et al. (September 2008). "Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells". Biol. Pharm. Bull. 31 (9): 1727–32. doi:10.1248/bpb.31.1727. PMID 18758067. 
  48. ^ Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T (March 2009). "Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial". Phytotherapy Research 23 (3): 367–72. doi:10.1002/ptr.2634. PMID 18844328. 
  49. ^ Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY, ed. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 454. ISBN 9780071481274. 
  50. ^ Gualtieri F, Manetti D, Romanelli MN, Ghelardini C (2002). "Design and study of piracetam-like nootropics, controversial members of the problematic class of cognition-enhancing drugs". Curr. Pharm. Des. 8 (2): 125–38. doi:10.2174/1381612023396582. PMID 11812254. 

External links