Comparison of orbital rocket engines

From Wikipedia, the free encyclopedia
Jump to: navigation, search

This page exposes an incomplete list of orbital rocket engines.

Legend for below table:   [under development] — [retired,canceled] — [operational,inactive]

Engine Origin Manufacturer Vehicle Stage Propellant Specific impulse, vac. (s) Vacuum thrust (N) Mass (kg) Thrust-to-weight ratio Chamber pressure (bar) Status Engine
Vulcain[1]

HM-60

 Europe Aérospatiale Ariane 5 1st LH2/LOX 431[1] 1,075,000[1] 1,300[citation needed] 84.318[citation needed] 102[citation needed] Retired Vulcain
Vulcain 2[2][3]  Europe Aérospatiale Ariane 5 1st LH2/LOX 429[3] 1,359,000[3] 1,800[2] 81.04?[note 1] Operational Vulcain 2
P230[4]  Europe Societe Nationale des Poudres et Explosifs(SNPE) Ariane 5 Booster HTPB(68/18) 286[4] 6,472,300[4] 268,000 with fuel[citation needed] Operational P230
HM7B[5][6]  Europe Snecma Ariane 5 ECA Upper LH2/LOX 446[6] 64,800[6] 165[6] 40.05?[note 2] 37[6] Operational HM7B
RD-180[7]  Russia NPO Energomash Atlas V 1st RP-1/LOX 338 4,150,000[7] 5,480[7] 78.44 266.8 Operational RD-180
RD-191  Russia NPO Energomash Angara 1st RP-1/LOX 337 2,090,000 2,200 96.9?[note 3] 263.4 Development RD-191
RD-0124

14Д23

 Russia NPO Energomash Soyuz-2.1b
Soyuz-2-1v
Angara
2nd,3st RP-1/LOX 359 294,300 480 62.5?[note 4] 162 Active RD-0124
NK-33-1 (AJ26-58)[8]

11Д111

 Soviet Union Kuznetsov Design Bureau
Aerojet
Antares
Soyuz-2.1v
1st RP-1/LOX 331[8] 1,638,000[8] 1,222[8] 136.8[8] 145[8] Operational NK-33-1 (AJ26-58)
Gamma 8[9]  UK Bristol Siddeley Black Arrow 1st H2O2/Kerosene 265[9] 234,800[9] 342[9] 70.01[9] 47.40[9] Retired Gamma 8
Gamma 2[10]  UK Bristol Siddeley Black Arrow 2nd H2O2/Kerosene 265[10] 68,200[10] 173[10] 40.22[10] Retired Gamma 2
Waxwing[11]  UK Bristol Aerojet Black Arrow Upper Solid 278[11] 29,400[11] 87[11] Retired Waxwing
Merlin 1C  United States SpaceX Falcon 9
Falcon 1
1/2 RP-1/LOX 304.8 480,000 630 96 67.7 Retired Merlin 1C
Merlin 1D

Highest thrust-to-weight ratio of any Earth-launchable rocket engine[12]

 United States SpaceX Falcon 9
Falcon Heavy
1/2 RP-1/LOX 310 720,000 490?[note 5] 150[12] 97 Operational Merlin 1D
Raptor[13]  United States SpaceX 1st Methane/LOX[13] 380[14] 8,400,000[14] Development[13] Raptor
RD-171M

Most powerful liquid-fuel rocket engine in the world[15]

 Russia NPO Energomash Zenit-3SL (Sea Launch)
Zenit-3SLB (Land Launch)
1st RP-1/LOX 337.2[15] 7,904,000[15] 9,300[15] 86.6[15] Operational RD-171M
RD-107A[16]

14Д22

 Russia NPO Energomash Soyuz-FG
Soyuz-2
1st RP-1/LOX 320.2[16] 1,020,240[16] 1,156[16] 61.2 Operational RD-107A
RD-108A

14Д21

 Russia NPO Energomash Soyuz-FG
Soyuz-2
2nd RP-1/LOX 320.6[16] 922,140[16] 1,151[16] 55.5 Operational RD-108A
RD-117[17]

11Д511

 Soviet Union NPO Energomash Soyuz-U 1st RP-1/LOX 315.8[17] 978,000[17] 1,250[17] 53.2 Operational RD-117
RD-118

11Д512

 Soviet Union NPO Energomash Soyuz-U 2nd RP-1/LOX 314.5[17] 999,639[17] 1,155[17] 58.6[citation needed] Operational RD-118
LE-5  Japan Mitsubishi Heavy Industries
NASDA
H-I Upper LH2/LOX 450[citation needed] 102,900[citation needed] 255 36.5[citation needed] Retired LE-5
LE-5A  Japan Mitsubishi Heavy Industries
NASDA
H-II Upper LH2/LOX 452[citation needed] 121,500[citation needed] 248 39.8[citation needed] Retired LE-5A
LE-5B  Japan Mitsubishi Heavy Industries
JAXA
H-IIA
H-IIB
Upper LH2/LOX 447[citation needed] 137,200[citation needed] 285 49.1?[note 6] 35.8[citation needed] Operational LE-5B
LE-7  Japan Mitsubishi Heavy Industries
NASDA
H-II 1st LH2/LOX 446[citation needed] 1,078,000[citation needed] 1,714 64.13[citation needed] 127[citation needed] Retired LE-7
LE-7A  Japan Mitsubishi Heavy Industries
JAXA
H-IIA
H-IIB
1st LH2/LOX 440[citation needed] 1,098,000[citation needed] 1,800 65.9 120[citation needed] Operational LE-7A
SRB-A  Japan IHI Aerospace
JAXA
H-IIA
H-IIB
Booster Solid 280 (SRB-A)
284 (SRB-A3 version H-IIA F18)[citation needed]
2,260,000 (SRB-A)
2,500,000 (SRB-A3 version H-IIA F18)[citation needed]
71,800 with fuel[citation needed] Operational SRB-A
RS-68

Most powerful hydrogen-fueled engine in the world

 United States Pratt & Whitney Rocketdyne Delta IV
Delta IV Heavy
1st LH2/LOX 412[citation needed] 6,600 51.2[citation needed] 97[citation needed] Operational RS-68
Atlas V SRB  United States Aerojet Atlas V Booster Solid 40,824 with fuel[citation needed] Operational Atlas V SRB
F-1

Most powerful single-chamber liquid-fueled rocket engine ever developed

 United States Rocketdyne Saturn V 1st RP-1/LOX 263 6,770,000 8,391 82.27?[note 7] 70 Retired F-1
RS-25 - SSME  United States Pratt & Whitney Rocketdyne Space Shuttle 1st LH2/LOX 452.3 2,279,000 3,526 65.91?[note 8] 206.4 Inactive since STS-135 RS-25
Space Shuttle Solid Rocket Booster

Largest solid-fuel rocket motor ever flown, and the first to be used for primary propulsion on human spaceflight missions

 United States Thiokol Space Shuttle
Ares I
Booster APCP 268 14,000,000 590,000
with fuel
Inactive since STS-135 Space Shuttle Solid Rocket Booster
J-2[18]  United States Rocketdyne Saturn V
Saturn IB
1st LH2/LOX 421 1,033,100 1,438 73.18 30 Retired J-2
J-2X[19][20]  United States Pratt & Whitney Rocketdyne Space Launch System Upper LH2/LOX 448 1,310,000 2,430[20] 54.97?[note 9] 30 Development J-2X
RL-10B-2[21][22]  United States Pratt & Whitney Rocketdyne Delta III
Delta IV
Upper LH2/LOX 462 109,890 277 41 44 Operational RL-10B-2
RL-10A-4-2[22][23]  United States Pratt & Whitney Rocketdyne Atlas V Upper LH2/LOX 451 99,100 167 59 39 Operational RL-10A-4-2
NSTAR[24][25]

First ever ion engine used as a main engine on an operational science spacecraft

 United States Hughes Electron Dynamics
Boeing
Deep Space 1
Dawn
Ion thruster Xenon 3,100 @2.3 kW 0.0920 @2.3 kW 8.2 Operational NSTAR
HiPEP

Most powerful inert gas ion thruster ever built

 United States NASA Jupiter Icy Moons Orbiter Ion thruster Xenon 9,620 @39.3 kW 0.670 @39.3 kW Canceled HiPEP
NEXT  United States NASA Ion thruster Xenon 4,100 @6.9 kW 0.236 @6.9 kW Development NEXT
VASIMR  United States Ad Astra Rocket Company Electro-magnetic thruster Argon 5,000 @200 kW 5? @200 kW Development VASIMR
PPS-1350  Russia
 Europe
OKB Fakel
Snecma
SMART-1 Hall thruster Xenon 1,650 @1.5 kW 0.088 @1.5 kW 5.3 0.0017?[note 10] Operational PPS-1350
SPT-100  Russia OKB Fakel LS-1300 satellites Hall thruster Xenon 1,500 @1.35 kW 0.083 @1.35 kW 3.5 0.0024?[note 11] Operational SPT-100
Boeing 601HP

First ever ion engine used as a main engine on an operational commercial satellite (PAS-5)

 United States Boeing Boeing 601HP satellites Ion thruster Xenon 2,568 @0.5 kW 0.018 @0.5 kW Operational Boeing 601HP
Boeing 702  United States Boeing Boeing 702 satellites Ion thruster Xenon 3,800 @4.5 kW 0.165 @4.5 kW Operational Boeing 702
KVD-1[26]

11Д56У

 Russia KBKhM GSLV Mk I Upper LH2/LOX 462[26] 69,626[26] 282[26] 25.17 55.9 Inactive KVD-1
CE-7.5[27][28]  India ISRO GSLV Mk II Upper LH2/LOX 454[28] 73,550[27] 445[28] 16.85?[note 12] 58 Operational CE-7.5
PSLV-1[29]  India ISRO PSLV 1st HTPB 269[29] 4,860,000[29] 160,200[29] 58[29] Operational PSLV-1
SLV-1[30]  India ISRO PSLV Booster HTPB 253[30] 502,600[30] 10,800[30] 43[30] Operational SLV-1
RD-264[31]

11Д119

 Soviet Union NPO Energomash Dnepr-1 1st N2O4/UDMH 318[31] 4,521,000[31] 3,600[31] 128?[note 13] 206[31] Operational RD-264
RD-276[32]

14Д14М

 Russia NPO Energomash Proton-M 1st N2O4/UDMH 316[32] 1,830,000[32] 1,260[32] 148?[note 14] 169[32] Operational RD-276
RD-0120[33]

11Д122

 Soviet Union KBKhA Energia 1st LH2/LOX 455[33] 1,962,000[33] 3,450[33] 57.80 219 Retired RD-0120
RD-193[34]  Russia NPO Energomash Soyuz-2.1v 1st RP-1/LOX 2,090,000[34] 1,900[34] 112?[note 15] Development RD-193
Aestus[35]  Europe Airbus Defence and Space Ariane 5 ES Upper N2O4/MMH 324[35] 30,000[35] 111[35] 27.6?[note 16] 11[35] Operational Aestus
Aestus II[36]  Europe Airbus Defence and Space Upper N2O4/MMH 340[36] 55,400[36] 138[36] 40.9?[note 17] 60[36] Development Aestus II
Blue Origin BE-4[37][38]  United States Blue Origin Atlas V 1st Methane/LOX Unknown 2,400,000[37][38] Development BE-4

See also[edit]

References[edit]

  1. ^ a b c "Vulcain". Encyclopedia Astronautica. Archived from the original on 27 December 2011. Retrieved 27 December 2011. 
  2. ^ a b "Vulcain 2". Encyclopedia Astronautica. Archived from the original on 27 December 2011. Retrieved 27 December 2011. 
  3. ^ a b c "VULCAIN 2 : Thrust Chamber". astrium.eads.net. Archived from the original on 27 December 2011. Retrieved 27 December 2011. 
  4. ^ a b c "P230". Encyclopedia Astronautica. Archived from the original on 27 December 2011. Retrieved 27 December 2011. 
  5. ^ "HM7-B". Encyclopedia Astronautica. Archived from the original on 27 April 2012. Retrieved 27 April 2012. 
  6. ^ a b c d e "PROPULSION SPATIALE : HM7B". astrium.eads.net. Archived from the original on 27 April 2012. Retrieved 27 April 2012. 
  7. ^ a b c "RD-180". 
  8. ^ a b c d e f "NK-33". Encyclopedia Astronautica. Archived from the original on 30 January 2014. Retrieved 30 January 2014. 
  9. ^ a b c d e f "Gamma 8". Encyclopedia Astronautica. Archived from the original on 26 April 2013. Retrieved 26 April 2013. 
  10. ^ a b c d e "Gamma 2". Encyclopedia Astronautica. Archived from the original on 26 April 2013. Retrieved 26 April 2013. 
  11. ^ a b c d "Black Arrow-3". Encyclopedia Astronautica. Archived from the original on 26 April 2013. Retrieved 26 April 2013. 
  12. ^ a b "Spacex's Merlin 1D Engine Achieves Flight Qualification". SpaceX. March 20, 2013. 
  13. ^ a b c "Huge Mars Colony Eyed by SpaceX Founder". Discovery News. 2012-12-13. Retrieved 2014-03-14. 
  14. ^ a b Butler, Amy; Svitak, Amy. "AR1 vs. Raptor: New rocket program will likely pit kerosene against methane" (2014-06-09). Aviation Week & Space Technology. "SpaceX is developing the Raptor as a reusable engine for a heavy-lift Mars vehicle, the first stage of which will feature 705 metric tons of thrust, making it 'slightly larger than the Apollo F-1 engine,' Tom Mueller, SpaceX vice president of propulsion development, said during a space propulsion conference last month in Cologne, Germany. The vacuum version is targeting 840 metric tons of thrust with 380 sec. of specific impulse. The company is testing subscale components using the E-2 test stand at NASA's Stennis Space Center in Mississippi, says Stennis spokeswoman Rebecca Strecker. ... Mueller said many people ask why the company switch to methane for its Mars rocket. With reusability in mind, SpaceX's cost studies revealed that 'by far the most cost-effective propellant to use is methane,' he said, which would be easier than hydrogen to manufacture on Mars." 
  15. ^ a b c d e "RD-171M". Encyclopedia Astronautica. Archived from the original on 26 November 2012. Retrieved 26 November 2012. 
  16. ^ a b c d e f g "РД-107/108". NPO Energomash. Archived from the original on 27 November 2012. Retrieved 27 November 2012. 
  17. ^ a b c d e f g "RD-117". lpre.de. Archived from the original on 27 November 2012. Retrieved 27 November 2012. 
  18. ^ "J-2". Encyclopedia Astronautica. Archived from the original on 23 December 2011. Retrieved 23 December 2011. 
  19. ^ "J-2X Engine". Pratt & Whitney Rocketdyne. Archived from the original on 23 December 2011. Retrieved 23 December 2011. 
  20. ^ a b "J-2X". Encyclopedia Astronautica. Archived from the original on 23 December 2011. Retrieved 23 December 2011. 
  21. ^ "RL-10B-2". Encyclopedia Astronautica. 23 December 2011. Archived from the original on 23 December 2011. 
  22. ^ a b "RL-10 - Specifications". Spaceandtech. 23 December 2011. Archived from the original on 23 December 2011. 
  23. ^ "RL-10A-4-2". Encyclopedia Astronautica. 23 December 2011. Archived from the original on 23 December 2011. 
  24. ^ Sovey, J. S., Rawlin, V. K., and Patterson, M. J. (May–June 2001). "Ion Propulsion Development Projects in U. S.: Space Electric Rocket Test 1 to Deep Space 1.". Journal of Propulsion and Power 17 (3): 517–526. 
  25. ^ "Hughes' Ion Engine Serving as Primary Propulsion to NASA's Deep Space 1". www.boeing.com. 24 December 2011. Archived from the original on 24 December 2011. 
  26. ^ a b c d "Двигатель КВД1" (in Russian). КБХМ им. A.M. Исаева. 
  27. ^ a b "Indigenous Cryogenic Engine and Stage". Retrieved 6 January 2014. 
  28. ^ a b c "GSLV Launch Vehicle Information". Retrieved 6 January 2014. 
  29. ^ a b c d e "PSLV-1". Retrieved 4 April 2014. 
  30. ^ a b c d e "SLV-1". Retrieved 4 April 2014. 
  31. ^ a b c d e "RD-264". Retrieved 4 April 2014. 
  32. ^ a b c d e "РД-253". Retrieved 5 April 2014. 
  33. ^ a b c d "RD0120". KBKhA. 
  34. ^ a b c "Energomash Test Fires New RD-193 Engine". parabolicarc.com. 
  35. ^ a b c d e "Aestus Rocket Engine". Airbus Defence and Space. Archived from the original on 29 January 2014. Retrieved 29 January 2014. 
  36. ^ a b c d e "Aestus Rocket Engine". Airbus Defence and Space. Archived from the original on 29 January 2014. Retrieved 29 January 2014. 
  37. ^ a b Ferster, Warren (2014-09-17). "ULA To Invest in Blue Origin Engine as RD-180 Replacement". Space News. Retrieved 2014-09-19. 
  38. ^ a b "BE-4". Blue Origin. Archived from the original on 17 September 2014. Retrieved 17 September 2014. 

Notes[edit]

  1. ^ \frac{1,340,000\ \mathrm{N}}{(1,686\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=81.04
  2. ^ \frac{64,800\ \mathrm{N}}{(165\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=40.05
  3. ^ \frac{2,090,000\ \mathrm{N}}{(2,200\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=96.9
  4. ^ \frac{294,300\ \mathrm{N}}{(480\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=62.5
  5. ^ \frac{720,000\ \mathrm{N}}{(150)(9.807\ \mathrm{m/s^2})}=489\ \mathrm{kg}
  6. ^ \frac{137,200\ \mathrm{N}}{(285\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=49.1
  7. ^ \frac{6,770,000\ \mathrm{N}}{(8,391\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=82.27
  8. ^ \frac{2,279,000\ \mathrm{N}}{(3,526\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=65.91
  9. ^ \frac{1,310,000\ \mathrm{N}}{(2,430\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=54.97
  10. ^ \frac{0.088\ \mathrm{N}}{(5.3\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=0.0017
  11. ^ \frac{0.083\ \mathrm{N}}{(3.5\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=0.0024
  12. ^ \frac{73,550\ \mathrm{N}}{(445\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=16.85
  13. ^ \frac{4,521,000\ \mathrm{N}}{(3,600\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=128
  14. ^ \frac{1,830,000\ \mathrm{N}}{(3,600\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=148
  15. ^ \frac{2,090,000\ \mathrm{N}}{(1,900\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=112.16
  16. ^ \frac{30,000\ \mathrm{N}}{(111\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=27.6
  17. ^ \frac{55,400\ \mathrm{N}}{(138\ \mathrm{kg})(9.807\ \mathrm{m/s^2})}=40.9