Conformal gravity

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Conformal gravity is a generic name for gravity theories that are invariant under conformal transformations in the Riemannian geometry sense; more accurately, they are invariant under Weyl transformations g_{ab}\rightarrow\Omega^2(x)g_{ab} where g_{ab} is the metric tensor and \Omega(x) is a function on spacetime.

Weyl-squared theories[edit]

The simplest theory in this category has the square of the Weyl tensor as the Lagrangian

\mathcal{S}=\int \mathrm{d}^4x \sqrt{-g} C_{abcd}C^{abcd},

where C_{abcd} is the Weyl tensor. This is to be contrasted with the usual Einstein–Hilbert action where the Lagrangian is just the Ricci scalar. The equation of motion upon varying the metric is called the Bach equation,

2\nabla_a\nabla_d{{C^a}_{bc}}^d+{{C^a}_{bc}}^dR_{ad}=0,

where R_{ab} is the Ricci tensor. Conformally flat metrics are solutions of this equation.

Since these theories lead to fourth order equations for the fluctuations around a fixed background, they are not manifestly unitary. It has therefore been generally believed that they could not be consistently quantized. This is now disputed.[1]

Four derivative theories[edit]

Conformal gravity is an example of a 4-derivative theory. This means that each term in the wave equation can contain up to 4 derivatives. There are pros and cons of 4-derivative theories. The pros are that the quantized version of the theory is more convergent and renormalisable. The cons are that there may be issues with causality. A simpler example of a 4-derivative wave equation is the scalar 4-derivative wave equation:


\Box^2 \Phi =0

The solution for this in a central field of force is:


\Phi(r)= 1 -2m/r +ar +br^2

The first two terms are the same as a normal wave equation. Since this equation is a simpler approximation to conformal gravity then m corresponds to mass of the central source. The last two terms are unique to 4-derivative wave equations. It has been suggested to assign small values to them to account for the galactic acceleration constant (also known as dark matter) and the dark energy constant.[2] The solution equivalent to the Schwarzschild solution in General Relativity for a spherical source for conformal gravity has a metric with:


\phi(r) = g^{00}  = (1-6bc)^\frac{1}{2} - \frac{2b}{r} + c r + \frac{d}{3} r^2

to show the difference between General Relativity. 6mc is very small so can be ignored. The problem is that now c is the total mass-energy of the source, b is the integral of density times distance to source squared. So this is a completely different potential to General Relativity and not just a small modification.

The main issue with conformal gravity theories, as well as any theory with higher derivatives, is the typical presence of ghosts, which point to instabilities of the quantum version of the theory, although there might be a solution to the ghost problem.[3]

Conformal Unification to the Standard Model[edit]

By adding a suitable gravitational term to the standard model action with gravitational coupling, the theory develops a local conformal (Weyl) invariance in the unitary gauge for the local SU(2). The gauge is fixed by requiring the Higgs scalar to be a constant. This mechanism generates the masses for the vector bosons and matter fields with no physical degrees of freedom for the Higgs. The gravity sector can be decoupled in the weak field limit and the resulting quantum field theory can be argued renormalizable in the unbroken SU(2) phase.[4][5]

See also[edit]

References[edit]

  1. ^ Mannheim, Philip D. (2007-07-16). "Conformal Gravity Challenges String Theory". PASCOS-07, Imperial College London, July 2007 0707. p. 2283. arXiv:0707.2283. Bibcode:2007arXiv0707.2283M. 
  2. ^ Mannheim, Philip D. (2005-08-01). "Alternatives to Dark Matter and Dark Energy". Prog.Part.Nucl.Phys. 56 (2): 340. arXiv:astro-ph/0505266. Bibcode:2006PrPNP..56..340M. doi:10.1016/j.ppnp.2005.08.001. 
  3. ^ Mannheim, Philip D. (2006-09-06). "Solution to the ghost problem in fourth order derivative theories". Found.Phys. 37 (4–5): 532. arXiv:hep-th/0608154. Bibcode:2007FoPh...37..532M. doi:10.1007/s10701-007-9119-7. 
  4. ^ Montag, J. Lee (1992), "Spontaneously Broken Conformal Symmetry and the Standard Model", Unpublished Research. http://mysite.verizon.net/lmontag/sitebuildercontent/sitebuilderfiles/conformal_standard_model.pdf
  5. ^ Pawlowski, M.; Raczka, R. (1994), "A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field", Foundations of Physics 24 (9): 1305–1327, arXiv:hep-th/9407137, Bibcode:1994FoPh...24.1305P, doi:10.1007/BF02148570 

External links[edit]