Construction of a complex null tetrad

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Calculations in the Newman–Penrose (NP) formalism of general relativity normally begin with the construction of a complex null tetrad \{l^a,n^a,m^a,\bar{m}^a\}, where \{l^a,n^a\} is a pair of real null vectors and \{m^a,\bar{m}^a\} is a pair of complex null vectors. These tetrad vectors respect the following normalization and metric conditions assuming the spacetime signature (-,+,+,+):

  • l_a l^a=n_a n^a=m_a m^a=\bar{m}_a \bar{m}^a=0\,;
  • l_a m^a=l_a \bar{m}^a=n_a m^a=n_a \bar{m}^a=0\,;
  • l_a n^a=l^a n_a=-1\,,\;\; m_a \bar{m}^a=m^a \bar{m}_a=1\,;
  • g_{ab}=-l_a  n_b - n_a  l_b +m_a  \bar{m}_b +\bar{m}_a  m_b\,,  \;\; g^{ab}=-l^a  n^b - n^a  l^b +m^a  \bar{m}^b +\bar{m}^a  m^b\,.

Only after the tetrad \{l^a,n^a,m^a,\bar{m}^a\} gets constructed can one move forward to compute the directional derivatives, spin coefficients, commutators, Weyl-NP scalars \Psi_i, Ricci-NP scalars \Phi_{ij} and Maxwell-NP scalars \phi_i and other quantities in NP formalism. There are three most commonly used methods to construct a complex null tetrad:

  1. All four tetrad vectors are nonholonomic combinations of orthonormal holonomic tetrads;[1]
  2. l^a (or n^a) are aligned with the outgoing (or ingoing) tangent vector field of null radial geodesics, while m^a and \bar{m}^a are constructed via the nonholonomic method;[2]
  3. A tetrad which is adapted to the spacetime structure from a 3+1 perspective, with its general form being assumed and tetrad functions therein to be solved.

In the context below, it will be shown how these three methods work.

Note: In addition to the convention \{(-,+,+,+); l^a n_a=-1\,,m^a \bar{m}_a=1\} employed in this article, the other one in use is \{(+,-,-,-); l^a n_a=1\,,m^a \bar{m}_a=-1\}.

Nonholonomic tetrad[edit]

The primary method to construct a complex null tetrad is via combinations of orthonormal bases.[1] For a spacetime g_{ab} with an orthonormal tetrad \{\omega_0\,,\omega_1\,,\omega_2\,,\omega_3 \},

g_{ab}=-\omega_0\omega_0+\omega_1\omega_1+\omega_2\omega_2+\omega_3\omega_3\,,

the covectors \{l_a\,,n_a\,,m_a\,,\bar{m}_a\} of the nonholonomic complex null tetrad can be constructed by

l_adx^a=\frac{\omega_0+\omega_1}{\sqrt{2}}\,,\quad n_adx^a=\frac{\omega_0-\omega_1}{\sqrt{2}}\,,
m_adx^a=\frac{\omega_2+i\omega_3}{\sqrt{2}}\,,\quad \bar{m}_adx^a=\frac{\omega_2-i\omega_3}{\sqrt{2}}\,,

and the tetrad vectors \{l^a\,,n^a\,,m^a\,,\bar{m}^a\} can be obtained by raising the indices of \{l_a\,,n_a\,,m_a\,,\bar{m}_a\} via the inverse metric g^{ab}.

Remark: The nonholonomic construction is actually in accordance with the local light cone structure.[1]

la (na) aligned with null radial geodesics[edit]

In Minkowski spacetime, the nonholonomically constructed null vectors \{l^a\,,n^a\} respectively match the outgoing and ingoing null radial rays. As an extension of this idea in generic curved spacetimes, \{l^a\,,n^a\} can still be aligned with the tangent vector field of null radial congruence.[2] However, this types of adaption only work for \{t,r,\theta,\phi\}, \{u,r,\theta,\phi\} or \{v,r,\theta,\phi\} coordinates where the radial behaviors can be well described, with u and v denote the outgoing (retarded) and ingoing (advanced) null coordinate respectively.

Tetrads adapted to the spacetime structure[edit]

At some typical boundary regions such as null infinity, timelike infinity, spacelike infinity, black hole horizons and cosmological horizons, null tetrads adapted to spacetime structures are usually employed to achieve the most succinct Newman–Penrose descriptions.

Newman-Unti tetrad for null infinity[edit]

For null infinity, the classic Newman-Unti (NU) tetrad[3][4][5] is employed to study asymptotic behaviors at null infinity,

l^a\partial_a=\partial_r:=D\,,
n^a\partial_a=\partial_u +U\partial_r +X\partial_\varsigma+\bar{X} \partial_{\bar \varsigma}:=\Delta\,,
m^a\partial_a=\omega\partial_r+\xi^3\partial_\varsigma +\xi^4\partial_{\bar \varsigma}:=\delta\,,
\bar{m}^a\partial_a=\bar{\omega}\partial_r+\bar{\xi}^3\partial_{\bar\varsigma} +\bar{\xi}^4\partial_{ \varsigma}:=\bar\delta\,,

where \{U, X, \omega, \xi^3, \xi^4\} are tetrad functions to be solved. For the NU tetrad, the foliation leaves are parameterized by the outgoing (advanced) null coordinate u with l_a=du, and r is the normalized affine coordinate along l^a (Dr=l^a\partial_ar=1); the ingoing null vector n^a acts as the null generator at null infinity with \Delta u=n^a\partial_a u=1. The coordinates \{u,r,\varsigma, \bar{\varsigma}\} comprise two real affine coordinates \{u,r\} and two complex stereographic coordinates \{\varsigma:= e^{i\phi}\cot\frac{\theta}{2}, \bar{\varsigma}=e^{-i\phi}\cot\frac{\theta}{2}\}, where \{\theta,\phi\} are the usual spherical coordinates on the cross-section \hat\Delta_u=S^2_u (as shown in ref.,[5] complex stereographic rather than real isothermal coordinates are used just for the convenience of completely solving NP equations).

Also, for the NU tetrad, the basic gauge conditions are

\kappa=\pi=\varepsilon=0\,,\quad \rho=\bar\rho\,,\quad \tau=\bar\alpha+\beta\,.

Adapted tetrad for exteriors and near-horizon vicinity of isolated horizons[edit]

For a more comprehensive view of black holes in quasilocal definitions, adapted tetrads which can be smoothly transited from the exterior to the near-horizon vicinity and to the horizons are required. For example, for isolated horizons describing black holes in equilibrium with their exteriors, such a tetrad and the related coordinates can be constructed this way.[6][7][8][9][10][11] Choose the first real null covector n_a as the gradient of foliation leaves


n_a\,=-dv  \,,
where v is the ingoing (retarded) Eddington–Finkelstein-type null coordinate, which labels the foliation cross-sections and acts as an affine parameter with regard to the outgoing null vector field l^a\partial_a, i.e.


Dv=1 \,,\quad \Delta v=\delta v=\bar\delta v=0\,.
Introduce the second coordinate r as an affine parameter along the ingoing null vector field n^a, which obeys the normalization


n^a\partial_a r \,=\,-1 \; \Leftrightarrow\; n^a\partial_a \,=\, -\partial_r\,.

Now, the first real null tetrad vector n^a is fixed. To determine the remaining tetrad vectors \{l^a,m^a,\bar m^a\} and their covectors, besides the basic cross-normalization conditions, it is also required that: (i) the outgoing null normal field l^a acts as the null generators; (ii) the null frame (covectors) \{l_a, n_a, m_a, \bar m_a\} are parallelly propagated along n^a\partial_a; (iii) \{m^a,\bar m^a\} spans the {t=constant, r=constant} cross-sections which are labeled by real isothermal coordinates \{y,z\}.

Tetrads satisfying the above restrictions can be expressed in the general form that

l^a\partial_a=\partial_v +U\partial_r +X^3\partial_y+X^4 \partial_{ z }\, := \,D \,,
n^a\partial_a=-\partial_r\, := \,\Delta \,,
m^a\partial_a=\Omega\partial_r+\xi^3\partial_y +\xi^4\partial_{ z } \, := \,\delta \,,
\bar{m}^a\partial_a=\bar{\Omega}\partial_r +\bar{\xi}^3\partial_{ y}+\bar{\xi}^4\partial_{ z } \, := \,\bar\delta \,.

The gauge conditions in this tetrad are

\nu=\tau=\gamma=0\,,\quad \mu=\bar\mu\,,\quad \pi=\alpha+\bar\beta\,,

Remark: Unlike Schwarzschild-type coordinates, here r=0 represents the horizon, while r>0 (r<0) corresponds to the exterior (interior) of an isolated horizon. People often Taylor expand a scalar Q function with respect to the horizon r=0,


Q=\sum_{i=0} Q^{(i)}r^i=Q^{(0)}+Q^{(1)}r+\cdots +Q^{(n)}r^n+\ldots

where Q^{(0)} refers to its on-horizon value. The very coordinates used in the adapted tetrad above are actually the Gaussian null coordinates employed in studying near-horizon geometry and mechanics of black holes.

See also[edit]

References[edit]

  1. ^ a b c David McMahon. Relativity Demystified - A Self-Teaching Guide. Chapter 9: Null Tetrads and the Petrov Classification. New York: McGraw-Hill, 2006.
  2. ^ a b Subrahmanyan Chandrasekhar. The Mathematical Theory of Black Holes. Section ξ20, Section ξ21, Section ξ41, Section ξ56, Section ξ63(b). Chicago: University of Chikago Press, 1983.
  3. ^ Ezra T Newman, Theodore W J Unti. Behavior of asymptotically flat empty spaces. Journal of Mathematical Physics, 1962, 3(5): 891-901.
  4. ^ Ezra T Newman, Roger Penrose. An Approach to Gravitational Radiation by a Method of Spin Coefficients. Section IV. Journal of Mathematical Physics, 1962, 3(3): 566-768.
  5. ^ a b E T Newman, K P Tod. Asymptotically Flat Spacetimes, Appendix B. In A Held (Editor): General relativity and gravitation: one hundred years after the birth of Albert Einstein. Vol(2), page 1-34. New York and London: Plenum Press, 1980.
  6. ^ Xiaoning Wu, Sijie Gao. Tunneling effect near weakly isolated horizon. Physical Review D, 2007, 75(4): 044027. arXiv:gr-qc/0702033v1
  7. ^ Xiaoning Wu, Chao-Guang Huang, Jia-Rui Sun. On gravitational anomaly and Hawking radiation near weakly isolated horizon. Physical Review D, 2008, 77(12): 124023. arXiv:0801.1347v1(gr-qc)
  8. ^ Yu-Huei Wu, Chih-Hung Wang. Gravitational radiation of generic isolated horizons. arXiv:0807.2649v1(gr-qc)
  9. ^ Xiao-Ning Wu, Yu Tian. Extremal isolated horizon/CFT correspondence. Physical Review D, 2009, 80(2): 024014. arXiv: 0904.1554(hep-th)
  10. ^ Yu-Huei Wu, Chih-Hung Wang. Gravitational radiations of generic isolated horizons and non-rotating dynamical horizons from asymptotic expansions. Physical Review D, 2009, 80(6): 063002. arXiv:0906.1551v1(gr-qc)
  11. ^ Badri Krishnan. The spacetime in the neighborhood of a general isolated black hole. arXiv:1204.4345v1 (gr-qc)