Cruciferous vegetables

From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about the use of Brassicaceae as food. For a botanical description of plants in this family (whether or not used for food), see Brassicaceae.
Cabbage plants

Cruciferous vegetables are vegetables of the family Brassicaceae (also called Cruciferae). These vegetables are widely cultivated, with many genera, species, and cultivars being raised for food production such as cauliflower, cabbage, cress, bok choy, broccoli, brussels sprouts and similar green leaf vegetables. The family takes its alternate name (Cruciferae, New Latin for "cross-bearing") from the shape of their flowers, whose four petals resemble a cross.

Ten of the most common cruciferous vegetables eaten by people, known colloquially as cole crops,[1] are in a single species (B. oleracea); they are not distinguished from one another taxonomically, only by horticultural category of cultivar groups. Numerous other genera and species in the family are also edible. Cruciferous vegetables are one of the dominant food crops worldwide. They are high in vitamin C and soluble fiber and contain multiple nutrients and phytochemicals.

List of cruciferous vegetables[edit]

Extensive selective breeding has produced a large variety of cultivars, especially within the genus Brassica. One description of genetic factors involved in the breeding of Brassica species is the Triangle of U.

The taxonomy of common cruciferous vegetables
common name genus specific epithet Cultivar group
Horseradish Armoracia rusticana
Land cress Barbarea verna
Ethiopian mustard Brassica carinata
Kale Brassica oleracea Acephala group
collard greens Brassica oleracea Acephala Group
Chinese broccoli (gai-lan) Brassica oleracea Alboglabra Group
Cabbage Brassica oleracea Capitata Group
Savoy cabbage Brassica oleracea Savoy Cabbage Group
Brussels sprouts Brassica oleracea Gemmifera Group
Kohlrabi Brassica oleracea Gongylodes Group
Broccoli Brassica oleracea Italica Group
Broccoflower Brassica oleracea Italica Group × Botrytis Group
Broccoli romanesco Brassica oleracea Botrytis Group / Italica Group
Cauliflower Brassica oleracea Botrytis Group
wild broccoli Brassica oleracea Oleracea Group
bok choy Brassica rapa chinensis
Komatsuna Brassica rapa pervidis or komatsuna
Mizuna Brassica rapa nipposinica
Rapini (broccoli rabe) Brassica rapa parachinensis
Flowering cabbage Brassica rapa parachinensis
Chinese cabbage, napa cabbage Brassica rapa pekinensis
Turnip root; greens Brassica rapa rapifera
Rutabaga (swede) Brassica napus napobrassica
Siberian kale Brassica napus pabularia
Canola/rapeseed Brassica rapa/napus oleifera
Wrapped heart mustard cabbage Brassica juncea rugosa
Mustard seeds, brown; greens Brassica juncea
White mustard seeds Brassica (or Sinapis) hirta
Black mustard seeds Brassica nigra
Tatsoi Brassica rosularis
Wild arugula Diplotaxis tenuifolia
Arugula (rocket) Eruca vesicaria
Field pepperweed Lepidium campestre
Maca Lepidium meyenii
Garden cress Lepidium sativum
Watercress Nasturtium officinale
Radish Raphanus sativus
Daikon Raphanus sativus longipinnatus
Wasabi Wasabia japonica

Clinical significance[edit]

Antimicrobial activity[edit]

Iso-thio-cyanates are an important factor in the action of wasabi against Helicobacter pylori,.[2][3][4] Sulforaphane demonstrates anti-inflammatory effects on Helicobacter pylori-infected gastric mucosae in mice and human subjects.[5]

Cancer[edit]

Cruciferous vegetables contain glucosinolates which in turn are converted into a number of chemicals which may have anticancer properties.[6] For example, 3,3'-diindolylmethane (DIM) in Brassica vegetables is an androgen receptor antagonist (i.e., an antiandrogen) and is antiproliferative human prostate cancer cells.[7]

Cruciferous vegetable consumption correlates with low cancer rates.[8] Furthermore, indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) also affect estrogen metabolism and lead to favorable shifts in hormone markers which in turn may reduce the incidence of several types of cancer.[9]

I3C promotes cell death in breast, prostate, endometrium, colon, and white blood cancer cells.[10] Ulyasov and others found positive results against leukemia with DIM,[11] Glucobrassicin being a precursor of DIM through indole-3-carbinol.

Drug and toxin metabolism[edit]

Chemicals contained in cruciferous vegetables induce the expression of the liver enzyme CYP1A2.[12] Furthermore some drugs such as haloperidol and theophylline are metabolized by CYP1A2. Consequently consumption of cruciferous vegetable may decrease bioavailability and half-life of these drugs.[13]

Brassicaceae contain a number of compounds under preliminary research for their potential hepato-protective properties.[10] Alliaceous and cruciferous vegetable consumption may induce glutathione S-transferases, uridine diphosphate-glucuronosyl transferases, and quinone reductases[14] all of which are potentially involved in detoxification of carcinogens such as aflatoxin.[15] High consumption of cruciferous vegetables has potential risk from allergies, interference with drugs like warfarin and genotoxicity.[16][17]

Taste[edit]

People who can taste phenylthiocarbamide, which is either very bitter or tasteless, are less likely to eat cruciferous vegetables,[18] due to the resemblance between isothiocyanate (ITC) and PTC.

Contraindications[edit]

Goiter[edit]

Cruciferous vegetables can potentially be goitrogenic (inducing goiter formation). They contain enzymes that interfere with the formation of thyroid hormone in people with iodine deficiency.[19][20] Cooking for 30 minutes significantly reduces the amount of goitrogens and nitriles. At high intake of crucifers, the goitrogens inhibit the incorporation of iodine into thyroid hormone and also the transfer of iodine into milk by the mammary gland.[21]

Nursing[edit]

Brassica species may cause baby colic in breast-feeding.[22][23]

References[edit]

  1. ^ Gibson AC. "Colewart and the cole crops". University of California Los Angeles. 
  2. ^ Shin IS, Masuda H, Naohide K (August 2004). "Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori". Int. J. Food Microbiol. 94 (3): 255–61. doi:10.1016/S0168-1605(03)00297-6. PMID 15246236. 
  3. ^ Haristoy X, Fahey JW, Scholtus I, Lozniewski A (April 2005). "Evaluation of the antimicrobial effects of several isothiocyanates on Helicobacter pylori". Planta Med. 71 (4): 326–30. doi:10.1055/s-2005-864098. PMID 15856408. 
  4. ^ Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A (May 2002). "Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors". Proc. Natl. Acad. Sci. U.S.A. 99 (11): 7610–5. doi:10.1073/pnas.112203099. PMC 124299. PMID 12032331. 
  5. ^ Yanaka A (2011). "Sulforaphane enhances protection and repair of gastric mucosa against oxidative stress in vitro, and demonstrates anti-inflammatory effects on Helicobacter pylori-infected gastric mucosae in mice and human subjects". Curr. Pharm. Des. 17 (16): 1532–40. doi:10.2174/138161211796196945. PMID 21548875. 
  6. ^ "Cruciferous Vegetables and Cancer Prevention". Fact Sheet. National Cancer Institute, U.S. Department of Health and Human Services. 06/07/2012.  Check date values in: |date= (help)
  7. ^ Le HT, Schaldach CM, Firestone GL, Bjeldanes LF (June 2003). "Plant-derived 3,3'-Diindolylmethane is a strong androgen antagonist in human prostate cancer cells". J. Biol. Chem. 278 (23): 21136–45. doi:10.1074/jbc.M300588200. PMID 12665522. 
  8. ^ Murillo G, Mehta RG (2001). "Cruciferous vegetables and cancer prevention". Nutr Cancer 41 (1–2): 17–28. doi:10.1080/01635581.2001.9680607. PMID 12094621. 
  9. ^ Minich DM, Bland JS (June 2007). "A review of the clinical efficacy and safety of cruciferous vegetable phytochemicals". Nutr. Rev. 65 (6 Pt 1): 259–67. doi:10.1111/j.1753-4887.2007.tb00303.x. PMID 17605302. 
  10. ^ a b Aggarwal BB, Ichikawa H (September 2005). "Molecular targets and anticancer potential of indole-3-carbinol and its derivatives". Cell Cycle 4 (9): 1201–15. doi:10.4161/cc.4.9.1993. PMID 16082211. 
  11. ^ Shorey LE, Hagman AM, Williams DE, Ho E, Dashwood RH, Benninghoff AD (2012). Ulasov, Ilya, ed. "3,3'-Diindolylmethane induces G1 arrest and apoptosis in human acute T-cell lymphoblastic leukemia cells". PLoS ONE 7 (4): e34975. doi:10.1371/journal.pone.0034975. PMC 3325915. PMID 22514694. 
  12. ^ Lampe JW, King IB, Li S, Grate MT, Barale KV, Chen C, Feng Z, Potter JD (June 2000). "Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets". Carcinogenesis 21 (6): 1157–62. doi:10.1093/carcin/21.6.1157. PMID 10837004. 
  13. ^ Bibi Z (2008). "Role of cytochrome P450 in drug interactions". Nutr Metab (Lond) 5: 27. doi:10.1186/1743-7075-5-27. PMC 2584094. PMID 18928560. 
  14. ^ Kensler TW, Curphey TJ, Maxiutenko Y, Roebuck BD (2000). "Chemoprotection by organosulfur inducers of phase 2 enzymes: dithiolethiones and dithiins". Drug Metabol Drug Interact 17 (1–4): 3–22. doi:10.1515/DMDI.2000.17.1-4.3. PMID 11201301. 
  15. ^ Kensler TW, Chen JG, Egner PA, Fahey JW, Jacobson LP, Stephenson KK, Ye L, Coady JL, Wang JB, Wu Y, Sun Y, Zhang QN, Zhang BC, Zhu YR, Qian GS, Carmella SG, Hecht SS, Benning L, Gange SJ, Groopman JD, Talalay P (November 2005). "Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People's Republic of China". Cancer Epidemiol. Biomarkers Prev. 14 (11 Pt 1): 2605–13. doi:10.1158/1055-9965.EPI-05-0368. PMID 16284385. 
  16. ^ Latté KP, Appel KE, Lampen A (2011). "Health benefits and possible risks of broccoli - an overview". Food and Chemical Toxicology 49 (12): 3287–309. doi:10.1016/j.fct.2011.08.019. PMID 21906651. 
  17. ^ Scott O, Galicia-Connolly E, Adams D, Surette S, Vohra S, Yager JY (2012). "The safety of cruciferous plants in humans: A systematic review". Journal of Biomedicine and Biotechnology 2012: 503241. doi:10.1155/2012/503241. PMC 3303573. PMID 22500092. 
  18. ^ Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, Drayna D (April 2004). "Natural selection and molecular evolution in PTC, a bitter-taste receptor gene". Am. J. Hum. Genet. 74 (4): 637–46. doi:10.1086/383092. PMC 1181941. PMID 14997422. Lay summaryScience Blog. 
  19. ^ Shomon M (August 27, 2009). "What are Goitrogens and How Do they Affect the Thyroid?". Thyroid Disease. About.com. 
  20. ^ McDougall J (December 2005). "Thyroid Deficiency Strikes One in Six". McDougall Newsletter 4 (12). 
  21. ^ Masterjohn C (15 February 2008). "Bearers of the Cross: Crucifers in the Context of Traditional Diets and Modern Science". The Weston A. Price Foundation for Wise Traditions in Food, Farming, and the Healing Arts. 
  22. ^ Scott O, Galicia-Connolly E, Adams D, Surette S, Vohra S, Yager JY (2012). "The safety of cruciferous plants in humans: a systematic review". J. Biomed. Biotechnol. 2012: 503241. doi:10.1155/2012/503241. PMC 3303573. PMID 22500092. 
  23. ^ "Foods to Avoid While Breastfeeding a Colicky Baby". 

Further reading[edit]

External links[edit]