Cuneane

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Cuneane
Ball and stick model of cuneane (1R,2R,3S,4S,5S,6R,7R,8S)
Identifiers
CAS number 20656-23-9 YesY
PubChem 140734, 54749138 2R,4R,6R,8R, 11194301 2S,4S,6S,8S
ChemSpider 124127 YesY
Jmol-3D images Image 1
Properties
Molecular formula C8H8
Molar mass 104.15 g mol−1
Density 1.578 g/ml
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references

Cuneane (C8H8, Pentacyclo[3.3.0.0 2,4.03,7.06,8]octane) is a saturated hydrocarbon.[1] Its name is derived from the Latin “cuneus”, meaning a wedge.[2] Cuneane may be produced from cubane by metal-ion-catalyzed σ-bond rearrangement.[3][4] Similar reactions are known for homocubane (C9H10) and bishomocubane (C10H10).[5][6]

Scheme 1. Synthesis of cuneane from cubane

The cuneane molecule has three groups of equivalent carbon atoms (A, B, C), which have also been confirmed by NMR.[7] The molecular graph of the carbon skeleton of cuneane is a regular graph with non-equivalent groups of vertices, and so it is a very important test object for different algorithms of mathematical chemistry.[8][9]

Scheme 2. Equivalent carbon atoms in cuneane

Some cuneane derivatives have liquid crystal properties.[10]

External links[edit]

  • 2D and 3D Models of Dodecahedrane and Cuneane Assemblies Link

References[edit]

  1. ^ with 3D-structure (however molecular graph of cuneane is a planar graph)
  2. ^ R. Criegee, R. Askani (1968). "Octamethylsemibullvalene". Angewandte Chemie International Edition in English 7 (7): 537. doi:10.1002/anie.196805371. 
  3. ^ Michael B. Smith, Jerry March (2001). March’s Advanced Organic Chemistry (5th ed.). John Wiley & Sons, Inc. p. 1459. ISBN 0-471-58589-0. 
  4. ^ Philip E. Eaton, Luigi Cassar, Jack Halpern (1970). "Silver(I)- and palladium(II)-catalyzed isomerizations of cubane. Synthesis and characterization of cuneane". Journal of the American Chemical Society 92 (21): 6366–6368. doi:10.1021/ja00724a061. 
  5. ^ Leo A. Paquette and John C. Stowell (1970). "Silver ion catalyzed rearrangements of strained .sigma. bonds. Application to the homocubyl and 1,1'-bishomocubyl systems". Journal of the American Chemical Society 92 (8): 2584–2586. doi:10.1021/ja00711a082. 
  6. ^ W. G. Dauben, M. G. Buzzolini, C. H. Schallhorn, D. L. Whalen, K. J. Palmer (1970). "Thermal and silver ion catalyzed isomerization of the 1,1′-bishomocubane system: preparation of a new C10H10isomer". Tetrahedron Letters 11 (10): 787–790. doi:10.1016/S0040-4039(01)97830-X. 
  7. ^ H. Guenther and W. Herrig (1973). "Anwendungen der 13C-Resonanz-Spektroskopie, X. 13C,13C-Kopplungskonstanten in Methylencycloalkanen". Chemische Berichte 106 (12): 3938–3950. doi:10.1002/cber.19731061217. 
  8. ^ M.I. Trofimov, E.A. Smolenskii (2000). "Electronegativity of atoms of ring-containing molecules—NMR spectroscopy data correlations: a description within the framework of topological index approach". Russian Chemical Bulletin 49 (3): 402. doi:10.1007/BF02494766. 
  9. ^ M.I. Trofimov, E.A. Smolenskii (2005). "Application of the electronegativity indices of organic molecules to tasks of chemical informatics". Russian Chemical Bulletin 54 (9): 2235. doi:10.1007/s11172-006-0105-6. 
  10. ^ Bényei, Gyula; Jalsovszky, István; Demus, Dietrich; Prasad, Krishna; Rao, Shankar; Vajda, Anikó; Jákli, Antal; Fodor‐Csorba, Katalin (2006). "First liquid crystalline cuneane‐caged derivatives: a structure-property relationship study". Liquid Crystals 33 (6): 689–696. doi:10.1080/02678290600722940.