Cuneiform (Unicode block)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Cuneiform
Range U+12000..U+123FF
(1024 code points)
Plane SMP
Scripts Cuneiform
Major alphabets Sumerian
Akkadian
Elamite
Hittite
Hurrian
Assigned 921 code points
Unused 103 reserved code points
Unicode version history
5.0 879 (+879)
7.0 921 (+42)
Note: [1]

In Unicode, the Sumero-Akkadian Cuneiform script is covered in two blocks:

These blocks, in version 6.0, are in the Supplementary Multilingual Plane (SMP).

The sample glyphs in the chart file published by the Unicode Consortium[2] show the characters in their Classical Sumerian form (Early Dynastic period, mid 3rd millennium BCE). The characters as written during the 2nd and 1st millennia BCE, the era during which the vast majority of cuneiform texts were written, are considered font variants of the same characters.

The character set as published in version 5.2 has been criticized, mostly because of its treatment of a number of common characters as ligatures, omitting them from the encoding standard.

History[edit]

The final proposal for Unicode encoding of the script was submitted by two cuneiform scholars working with an experienced Unicode proposal writer in June 2004.[3] The base character inventory is derived from the list of Ur III signs compiled by the Cuneiform Digital Library Initiative of UCLA based on the inventories of Miguel Civil, Rykle Borger (2003), and Robert Englund. Rather than opting for a direct ordering by glyph shape and complexity, according to the numbering of an existing catalogue, the Unicode order of glyphs was based on the Latin alphabetic order of their 'main' Sumerian transliteration as a practical approximation.

Character inventory and ordering[edit]

Further information: List of cuneiform signs

Of the 907 signs listed by Borger (2003), some 200 have no encoding at a single codepoint. Conversely, a number of combinations considered reducible by Borger were assigned unique codepoints. These differences are due to the difficulty of establishing what represents a single character in cuneiform, and indeed most of Borger's items not encoded have straightforward etymological decomposition. There are still quite a number of universally recognized signs missing, and criticism has been voiced to the effect that the encoding "disregards an important part of the accumulated knowledge of generations of assyriologists about what actually function as single signs in normal texts, and are reflected in the traditional sign lists, most recently and comprehensively Borger's Mesopotamische Zeichenliste".[4] For example, there are signs written as ligatures of varying constituent signs, such as KURUM7 (Borger 2003 no. 729) that was written IGI.NรG in early times, but later IGI.ERIM. Since there is no codepoint for KURUM7, the sign must be expressed as either IGI.NรG (U+12146 U+1243C, ๐’…†๐’ผ) or IGI.ERIM (U+12146 U+1209F, ๐’…†๐’‚Ÿ) depending on the shape of the glyph, in violation[citation needed] of the basic principle of Unicode to encode characters, not glyphs. While those signs can in principle still be added by a "Cuneiform Extended" range in the future, as has been done for a number of other scripts ("Latin Extended" etc.), their absence as of Unicode 7.0 means that the standard's usability for the encoding of actual texts is limited.

Rather than opting for an ordering by glyph shape and complexity, the Unicode order of characters is the Latin alphabet order of their "main" Sumerian transliteration (placing signs on ล -, transliterated as SH-, between SAR and SI). In most (but not all) cases, the "etymological" decomposition of originally complex signs ("ligatures") has been chosen, even if the sign's most familiar value is another. For example, U+12066 ๐’ฆ dag kisim5 times lu plus mash2 is better known as AMAล , U+12258 ๐’‰˜ ninda2 times ne is better known as รG, and U+1212F ๐’„ฏ hi times ash2 is better known as แธชAR or แธชUR.

List of signs[edit]

See also list of cuneiform signs.

The following table allows matching of Borger's 1981 and 2003 numbering with Unicode characters [5] The "primary" transliteration column has the glyphs' Sumerian values as given by the official glyph name, slightly modified here for legibility by including traditional assyriological symbols such as "x" rather than "TIMES". The exact Unicode names can be unambiguously recovered by prefixing, "CUNEIFORM [NUMERIC] SIGN", replacing "TIMES" for "x", "PLUS" for "+" and "OVER" for "/", "ASTERISK" for "*", "H" for "แธช", "SH" for "ล ", and switching to uppercase.

Sumero-Akkadian Cuneiform[edit]

codepoint "primary" transliteration Borger
(2003)
Borger
(1981)
comments
๐’€€ U+12000 A 839 579
๐’€ U+12001 A x A 845 583 EDURU
๐’€‚ U+12002 A x BAD 840 580 AGAM
๐’€ƒ U+12003 A x GAN2 tenรป
๐’€„ U+12004 A x แธชA 846 584; 587 ZAแธช3
๐’€… U+12005 A x IGI 844 581
๐’€† U+12006 A x LAGAR gunรป 843 582
๐’€‡ U+12007 A x MUล  842
๐’€ˆ U+12008 A x SAG 841 585
๐’€‰ U+12009 A2 560 334 ID
๐’€Š U+1200A AB 223 128
๐’€‹ U+1200B AB x Aล 2 227 128**,200a
๐’€Œ U+1200C AB x DUN3 gunรป
๐’€ U+1200D AB x GAL 228 194
๐’€Ž U+1200E AB x GAN2 tenรป 225 198
๐’€ U+1200F AB x แธชA 236 200 NINA
๐’€ U+12010 AB x IGI gunรป 229 196
๐’€‘ U+12011 AB x IMIN 237
๐’€’ U+12012 AB x LAGAB 234
๐’€“ U+12013 AB x ล Eล  226 200c
๐’€” U+12014 AB x U + U + U 232
๐’€• U+12015 AB gunรป
๐’€– U+12016 AB2 672 420 LID
๐’€— U+12017 AB2 x BALAG 676 422 LILIZ
๐’€˜ U+12018 AB2 x GAN2 tenรป 674 423 KIR6
๐’€™ U+12019 AB2 x ME + EN 679 426
๐’€š U+1201A AB2 x ล A3 677 424 LIBIล 
๐’€› U+1201B AB2 x TAK4 673 420,8
๐’€œ U+1201C AD 258 145
๐’€ U+1201D AK 127 97 AG
๐’€ž U+1201E AK x ERIN2 129 98 ME3
๐’€Ÿ U+1201F AK x ล ITA + GIล  128
๐’€  U+12020 AL 474 298
๐’€ก U+12021 AL x AL 478
๐’€ข U+12022 AL x DIM2 480
๐’€ฃ U+12023 AL x GIล  477 301
๐’€ค U+12024 AL x แธชA 482 305
๐’€ฅ U+12025 AL x KAD3
๐’€ฆ U+12026 AL x KI 481 303
๐’€ง U+12027 AL x ล E 348,479 205 IL
๐’€จ U+12028 AL x Uล  476 300
๐’€ฉ U+12029 ALAN 573 358
๐’€ช U+1202A aleph 635 397 late variant of Aแธช; HZL nr. 332
๐’€ซ U+1202B AMAR 695 437 ZUR
๐’€ฌ U+1202C AMAR x ล E 696 438 SISKUR
๐’€ญ U+1202D AN 010 13
๐’€ฎ U+1202E AN / AN
๐’€ฏ U+1202F AN three times
๐’€ฐ U+12030 AN + NAGA opposing AN + NAGA
๐’€ฑ U+12031 AN + NAGA squared
๐’€ฒ U+12032 ANล E 353 208 "donkey"
๐’€ณ U+12033 APIN 090 56
๐’€ด U+12034 ARAD 0018 50
๐’€ต U+12035 ARAD x KUR 0019 51
๐’€ถ U+12036 ARKAB 859v NIG2.IB, ARGAB
๐’€ท U+12037 ASAL2
๐’€ธ U+12038 Aล  001 001 also DILI, DIDLI (plural)
๐’€น U+12039 Aล  ZIDA tenรป 575 209 DIล  tenรป, GE23
๐’€บ U+1203A Aล  KABA tenรป 647?
๐’€ป U+1203B Aล  / Aล  TUG2 / TUG2 TUG2 / TUG2 PAP
๐’€ผ U+1203C Aล  / Aล  / Aล  505 325* Eล 16
๐’€ฝ U+1203D Aล  / Aล  / Aล  crossing Aล  / Aล  / Aล  649 364/5,5-6 ล Uล UR2
๐’€พ U+1203E Aล 2 548 339
๐’€ฟ U+1203F Aล GAB 173 6
๐’€ U+12040 BA 014 005 BA.BA.ZA = "porridge"
๐’ U+12041 BAD 113 69
๐’‚ U+12042 BAG3 78
๐’ƒ U+12043 BAแธชAR2 309
๐’„ U+12044 BAL 005 9
๐’… U+12045 BAL / BAL
๐’† U+12046 BALAG 565 352 DUB2
๐’‡ U+12047 BAR 121 74
๐’ˆ U+12048 BARA2 554 344
๐’‰ U+12049 BI 358 214
๐’Š U+1204A BI x A
๐’‹ U+1204B BI x GAR 361 214c
๐’Œ U+1204C BI x IGI gunรป
๐’ U+1204D BU 580 371 GID2
๐’Ž U+1204E BU / BU AB 582
๐’ U+1204F BU / BU UN
๐’ U+12050 BU crossing BU 581
๐’‘ U+12051 BULUG 169 60
๐’’ U+12052 BULUG / BULUG
๐’“ U+12053 BUR 559 349 NIG2 gunรป
๐’” U+12054 BUR2 008
๐’• U+12055 DA 561 335
๐’– U+12056 DAG 438 280 PAR3
๐’— U+12057 DAG KISIM5 x A + MAล  461 294b
๐’˜ U+12058 DAG KISIM5 x AMAR 458 288
๐’™ U+12059 DAG KISIM5 x BALAG 457
๐’š U+1205A DAG KISIM5 x BI 447 288
๐’› U+1205B DAG KISIM5 x GA 455 291 UBUR
๐’œ U+1205C DAG KISIM5 x GA + MAล 
๐’ U+1205D DAG KISIM5 x GI 444 284
๐’ž U+1205E DAG KISIM5 x GIR2 440 281a; 294e; 432,1 KIล I8
๐’Ÿ U+1205F DAG KISIM5 x GUD 452 289 UTUL5
๐’  U+12060 DAG KISIM5 x แธชA 462 294d
๐’ก U+12061 DAG KISIM5 x IR 450 UBUR3
๐’ข U+12062 DAG KISIM5 x IR + LU 451 UBUR4
๐’ฃ U+12063 DAG KISIM5 x KAK 448 294f
๐’ค U+12064 DAG KISIM5 x LA 441 282
๐’ฅ U+12065 DAG KISIM5 x LU 459 UBUR2
๐’ฆ U+12066 DAG KISIM5 x LU + MAล 2 460 293; 294 AMAล 
๐’ง U+12067 DAG KISIM5 x LUM 463 294a
๐’จ U+12068 DAG KISIM5 x NE 446 286
๐’ฉ U+12069 DAG KISIM5 x PAP + PAP
๐’ช U+1206A DAG KISIM5 x SI 445 285
๐’ซ U+1206B DAG KISIM5 x TAK4 443 283
๐’ฌ U+1206C DAG KISIM5 x U2 + GIR2 453 290
๐’ญ U+1206D DAG KISIM5 x Uล  449 287 UTUA
๐’ฎ U+1206E DAM 889 557
๐’ฏ U+1206F DAR 183 114 GUN3, แธชUR gunรป, SI gunรป
๐’ฐ U+12070 DARA3 166 100 "ibex"
๐’ฑ U+12071 DARA4 817 540
๐’ฒ U+12072 DI 736 457
๐’ณ U+12073 DIB 813 537 DAB
๐’ด U+12074 DIM 167 94
๐’ต U+12075 DIM x ล E 168 94 MUN
๐’ถ U+12076 DIM2 686 440 GIM
๐’ท U+12077 DIN 119 465
๐’ธ U+12078 DIN KASKAL U gunรป DIล 
๐’น U+12079 DIล  748; 749 480 NIGIDA
๐’บ U+1207A DU 350 206
๐’ป U+1207B DU / DU 350 206a LAแธช4
๐’ผ U+1207C DU gunรป 351 201 GIR6, SUแธชUล 
๐’ฝ U+1207D DU ลกeลกig 352 202 GIR5, KAล 4
๐’พ U+1207E DUB 242 138
๐’ฟ U+1207F DUB x Eล 2
๐’‚€ U+12080 DUB2
๐’‚ U+12081 DUG 499 309 BI x A
๐’‚‚ U+12082 DUGUD 704 445
๐’‚ƒ U+12083 DUแธช 298 167 GAB, DU8, TUแธช
๐’‚„ U+12084 DUN 744 467 ล UL
๐’‚… U+12085 DUN3 836 595 GรN, Tร™N
๐’‚† U+12086 DUN3 gunรป
๐’‚‡ U+12087 DUN3 gunรป gunรป
๐’‚ˆ U+12088 DUN4 557 348 DUL4, UR gunรป ลกeลกig, MIR ลกeลกig
๐’‚‰ U+12089 DUR2 808 DURU2, DURUN, TUKUL, TUล 
๐’‚Š U+1208A E 498 308
๐’‚‹ U+1208B E x PAP
๐’‚Œ U+1208C E / E NUN / NUN
๐’‚ U+1208D E2 495 324
๐’‚Ž U+1208E E2 x A + แธชA + DA
๐’‚ U+1208F E2 x GAR
๐’‚ U+12090 E2 x MI
๐’‚‘ U+12091 E2 x SAL
๐’‚’ U+12092 E2 x ล E
๐’‚“ U+12093 E2 x U
๐’‚” U+12094 EDIN 300 170
๐’‚• U+12095 EGIR 356 209
๐’‚– U+12096 EL 899 564 SIKIL
๐’‚— U+12097 EN 164 99
๐’‚˜ U+12098 EN x GAN2 165 54 BURU14
๐’‚™ U+12099 EN x GAN2 tenรป
๐’‚š U+1209A EN x ME 164lig2
๐’‚› U+1209B EN crossing EN
๐’‚œ U+1209C EN opposing EN
๐’‚ U+1209D EN squared
๐’‚ž U+1209E EREN 818 541
๐’‚Ÿ U+1209F ERIN2 612; 613 393 ERIM, ZALAG2; PIRIG
๐’‚  U+120A0 Eล 2 810; 811 536 ล E3, GI7, ZI3
๐’‚ก U+120A1 EZEN 271 152 IZIN, KEล DA
๐’‚ข U+120A2 EZEN x A 288
๐’‚ฃ U+120A3 EZEN x A + LAL 289 159 SIL7
๐’‚ค U+120A4 EZEN x A + LAL x LAL 290 160 ASILAL4
๐’‚ฅ U+120A5 EZEN x AN
๐’‚ฆ U+120A6 EZEN x BAD 275 152 UG5
๐’‚ง U+120A7 EZEN x DUN3 gunรป 287 162
๐’‚จ U+120A8 EZEN x DUN3 gunรป gunรป
๐’‚ฉ U+120A9 EZEN x แธชA 291 161
๐’‚ช U+120AA EZEN x แธชA gunรป
๐’‚ซ U+120AB EZEN x IGI gunรป
๐’‚ฌ U+120AC EZEN x KASKAL 277
๐’‚ญ U+120AD EZEN x KASKAL squared
๐’‚ฎ U+120AE EZEN x KU3 284 152
๐’‚ฏ U+120AF EZEN x LA 274 152
๐’‚ฐ U+120B0 EZEN x LAL x LAL
๐’‚ฑ U+120B1 EZEN x LI 273 153
๐’‚ฒ U+120B2 EZEN x LU 286 157
๐’‚ณ U+120B3 EZEN x U2 279
๐’‚ด U+120B4 EZEN x UD 283
๐’‚ต U+120B5 GA 491 319
๐’‚ถ U+120B6 GA gunรป 492
๐’‚ท U+120B7 GA2 387 233
๐’‚ธ U+120B8 GA2 x A + DA + แธชA 428 273
๐’‚น U+120B9 GA2 x A + แธชA
๐’‚บ U+120BA GA2 x A + IGI 429 274
๐’‚ป U+120BB GA2 x AB2 tenรป + TAB 423?
๐’‚ผ U+120BC GA2 x AN 392 237 AMA
๐’‚ฝ U+120BD GA2 x Aล  389 234
๐’‚พ U+120BE GA2 x Aล 2 + GAL 414 258
๐’‚ฟ U+120BF GA2 x BAD 395 242
๐’ƒ€ U+120C0 GA2 x BAR + RA
๐’ƒ U+120C1 GA2 x BUR
๐’ƒ‚ U+120C2 GA2 x BUR + RA 415 259
๐’ƒƒ U+120C3 GA2 x DA 416 416
๐’ƒ„ U+120C4 GA2 x DI 425 268
๐’ƒ… U+120C5 GA2 x DIM x ล E 401 206
๐’ƒ† U+120C6 GA2 x DUB 403 250
๐’ƒ‡ U+120C7 GA2 x EL
๐’ƒˆ U+120C8 GA2 x EL + LA 433 272
๐’ƒ‰ U+120C9 GA2 x EN 399 247
๐’ƒŠ U+120CA GA2 x EN x GAN2 tenรป 400 239 GA2 x BURU14
๐’ƒ‹ U+120CB GA2 x GAN2 tenรป 402 248
๐’ƒŒ U+120CC GA2 x GAR 431 278 GALGA
๐’ƒ U+120CD GA2 x GI 396 243
๐’ƒŽ U+120CE GA2 x GI4 412 256
๐’ƒ U+120CF GA2 x GI4 + A
๐’ƒ U+120D0 GA2 x GIR2 + SU 391 236
๐’ƒ‘ U+120D1 GA2 x แธชA + LU + Eล 2 430 277
๐’ƒ’ U+120D2 GA2 x แธชAL
๐’ƒ“ U+120D3 GA2 x แธชAL + LA 390 235
๐’ƒ” U+120D4 GA2 x แธชI + LI 421 263
๐’ƒ• U+120D5 GA2 x แธชUB2 398
๐’ƒ– U+120D6 GA2 x IGI gunรป 417 260
๐’ƒ— U+120D7 GA2 x Iล  + แธชU + Aล  406 250i
๐’ƒ˜ U+120D8 GA2 x KAK 407 251
๐’ƒ™ U+120D9 GA2 x KASKAL 405 250d
๐’ƒš U+120DA GA2 x KID 394 241
๐’ƒ› U+120DB GA2 x KID + LAL 409 251
๐’ƒœ U+120DC GA2 x KU3 + AN 426 269
๐’ƒ U+120DD GA2 x LA
๐’ƒž U+120DE GA2 x ME + EN 427 270 MEN
๐’ƒŸ U+120DF GA2 x MI 424 265 ITIMA
๐’ƒ  U+120E0 GA2 x NUN 397 244 GANUN
๐’ƒก U+120E1 GA2 x NUN / NUN 411 255 UR3
๐’ƒข U+120E2 GA2 x PA 408 252; 257 GAZI, SILA4
๐’ƒฃ U+120E3 GA2 x SAL 432 271 ARแธชUล 
๐’ƒค U+120E4 GA2 x SAR 413 250b
๐’ƒฅ U+120E5 GA2 x ล E 418 261 ESAG2
๐’ƒฆ U+120E6 GA2 x ล E + TUR 419 261a; 272a
๐’ƒง U+120E7 GA2 x ล ID 410 252
๐’ƒจ U+120E8 GA2 x SUM 404 250c
๐’ƒฉ U+120E9 GA2 x TAK4 394
๐’ƒช U+120EA GA2 x U 422 264
๐’ƒซ U+120EB GA2 x UD 420 262
๐’ƒฌ U+120EC GA2 x UD + DU
๐’ƒญ U+120ED GA2 / GA2
๐’ƒฎ U+120EE GABA 167
๐’ƒฏ U+120EF GABA crossing GABA
๐’ƒฐ U+120F0 GAD 157 90
๐’ƒฑ U+120F1 GAD / GAD GAR / GAR
๐’ƒฒ U+120F2 GAL 553 343
๐’ƒณ U+120F3 GAL GAD / GAD GAR / GAR
๐’ƒด U+120F4 GALAM 338 176k SUKUD
๐’ƒต U+120F5 GAM 576 362
๐’ƒถ U+120F6 GAN 253 143 KAN, แธชE2
๐’ƒท U+120F7 GAN2 174 105I
๐’ƒธ U+120F8 GAN2 tenรป 175 105 KAR2, ล E3 tenรป
๐’ƒน U+120F9 GAN2 / GAN2 174v
๐’ƒบ U+120FA GAN2 crossing GAN2 174v
๐’ƒป U+120FB GAR 859 597 NINDA, NIG2
๐’ƒผ U+120FC GAR3 543 333
๐’ƒฝ U+120FD GAล AN 562; 563 350 U gunรป
๐’ƒพ U+120FE GEล TIN 212 210
๐’ƒฟ U+120FF GEล TIN x KUR 213
๐’„€ U+12100 GI 141 85
๐’„ U+12101 GI x E
๐’„‚ U+12102 GI x U
๐’„ƒ U+12103 GI crossing GI 105 67
๐’„„ U+12104 GI4 507 326
๐’„… U+12105 GI4 / GI4 508 326a GIGI
๐’„† U+12106 GI4 crossing GI4 508 326a GIGI
๐’„‡ U+12107 GIDIM 830 576
๐’„ˆ U+12108 GIR2 006 10
๐’„‰ U+12109 GIR2 gunรป 007 10
๐’„Š U+1210A GIR3 701 444 PIRIG
๐’„‹ U+1210B GIR3 x A + IGI 703 421; 579,396
๐’„Œ U+1210C GIR3 x GAN2 tenรป 675 423 GIRI16
๐’„ U+1210D GIR3 x IGI
๐’„Ž U+1210E GIR3 x LU + IGI 702 537,129
๐’„ U+1210F GIR3 x PA
๐’„ U+12110 GISAL 376 226
๐’„‘ U+12111 GIล  469 296 GEล 
๐’„’ U+12112 GIล  crossing GIล  469v
๐’„“ U+12113 GIล  x BAD 471
๐’„” U+12114 GIล  x TAK4
๐’„• U+12115 GIล  tenรป 470 296 GUR17
๐’„– U+12116 GU 891 559
๐’„— U+12117 GU crossing GU 892 569 SUแธช3
๐’„˜ U+12118 GU2 176 106
๐’„™ U+12119 GU2 x KAK 178
๐’„š U+1211A GU2 x KAK x IGI gunรป
๐’„› U+1211B GU2 x NUN
๐’„œ U+1211C GU2 x SAL + TUG2
๐’„ U+1211D GU2 gunรป 509 327 USAN2
๐’„ž U+1211E GUD 472 297 GU4 "cow"
๐’„Ÿ U+1211F GUD x A + KUR
๐’„  U+12120 GUD x KUR 309
๐’„ก U+12121 GUD / GUD LUGAL 572 357 BIล EBA3
๐’„ข U+12122 GUL 682 429 SUN2
๐’„ฃ U+12123 GUM 339 191 KUM
๐’„ค U+12124 GUM x ล E 340 192 GAZ, GAS
๐’„ฅ U+12125 GUR 180 111
๐’„ฆ U+12126 GUR7 819 542
๐’„ง U+12127 GURUN 503 310
๐’„จ U+12128 GURUล  322
๐’„ฉ U+12129 แธชA 856 589 KU6
๐’„ช U+1212A แธชA tenรป 857 590 ZUBUD
๐’„ซ U+1212B แธชA gunรป 558 346 GIR, PE
๐’„ฌ U+1212C แธชAL 003 002 = Aล .Aล 
๐’„ญ U+1212D แธชI 631 396 DUG3
๐’„ฎ U+1212E แธชI x Aล  634 405 SUR3
๐’„ฏ U+1212F แธชI x Aล 2 644 401 แธชAR, แธชUR
๐’„ฐ U+12130 แธชI x BAD 640; 595 406 KAM
๐’„ฑ U+12131 แธชI x DIล  659 409e ล AR2 x DIล 
๐’„ฒ U+12132 แธชI x GAD 650 407 ล AR2 x GAD
๐’„ณ U+12133 แธชI x KIN 660 410
๐’„ด U+12134 แธชI x NUN 636 398 Aแธช, Uแธช
๐’„ต U+12135 แธชI x ล E 643 400 BIR
๐’„ถ U+12136 แธชI x U 653; 688 409 ล AR2 x U; DUBUR2
๐’„ท U+12137 แธชU 132 78
๐’„ธ U+12138 แธชUB2 149 88
๐’„น U+12139 แธชUB2 x AN
๐’„บ U+1213A แธชUB2 x แธชAL
๐’„ป U+1213B แธชUB2 x KASKAL
๐’„ผ U+1213C แธชUB2 x LIล 
๐’„ฝ U+1213D แธชUB2 x UD 150
๐’„พ U+1213E แธชUL2 877 550
๐’„ฟ U+1213F I 252 142
๐’…€ U+12140 I A
๐’… U+12141 IB 807 535
๐’…‚ U+12142 IDIM
๐’…ƒ U+12143 IDIM / IDIM BUR
๐’…„ U+12144 IDIM / IDIM squared
๐’…… U+12145 IG 136 80
๐’…† U+12146 IGI 724 449 ล I, LIM
๐’…‡ U+12147 IGI DIB 731 455 U3
๐’…ˆ U+12148 IGI RI 726 451 AR
๐’…‰ U+12149 IGI / IGI ล IR / ล IR UD / UD
๐’…Š U+1214A IGI gunรป 564 351 SIG7
๐’…‹ U+1214B IL 348 205
๐’…Œ U+1214C IL x GAN2 tenรป 349
๐’… U+1214D IL2 493 320
๐’…Ž U+1214E IM 641 399
๐’… U+1214F IM x TAK4 642 399,51
๐’… U+12150 IM crossing IM 641v 399*
๐’…‘ U+12151 IM opposing IM 641v
๐’…’ U+12152 IM squared 641v 399**
๐’…“ U+12153 IMIN 863 598c
๐’…” U+12154 IN 261 148
๐’…• U+12155 IR 437 232 GAG gunรป
๐’…– U+12156 Iล  357 212
๐’…— U+12157 KA 024 15
๐’…˜ U+12158 KA x A 064 35 NAG
๐’…™ U+12159 KA x AD
๐’…š U+1215A KA x AD + KU3 034 20
๐’…› U+1215B KA x Aล 2 046
๐’…œ U+1215C KA x BAD
๐’… U+1215D KA x BALAG 047
๐’…ž U+1215E KA x BAR 030
๐’…Ÿ U+1215F KA x BI
๐’…  U+12160 KA x ERIN2 053 29*
๐’…ก U+12161 KA x Eล 2
๐’…ข U+12162 KA x GA 044
๐’…ฃ U+12163 KA x GAL
๐’…ค U+12164 KA x GAN2 tenรป 033 19 PU3
๐’…ฅ U+12165 KA x GAR 065
๐’…ฆ U+12166 KA x GAR + ล A3 + A 066
๐’…ง U+12167 KA x GI
๐’…จ U+12168 KA x GIR2 025
๐’…ฉ U+12169 KA x GIล  + SAR
๐’…ช U+1216A KA x GIล  crossing GIล 
๐’…ซ U+1216B KA x GU 069 34
๐’…ฌ U+1216C KA x GUR7 063
๐’…ญ U+1216D KA x IGI 059
๐’…ฎ U+1216E KA x IM 054 30 BUN2
๐’…ฏ U+1216F KA x KAK 038
๐’…ฐ U+12170 KA x KI 060
๐’…ฑ U+12171 KA x KID
๐’…ฒ U+12172 KA x LI 026 16
๐’…ณ U+12173 KA x LU
๐’…ด U+12174 KA x ME 061 32 EME
๐’…ต U+12175 KA x ME + DU
๐’…ถ U+12176 KA x ME + GI
๐’…ท U+12177 KA x ME + TE
๐’…ธ U+12178 KA x MI 057
๐’…น U+12179 KA x MI + NUNUZ
๐’…บ U+1217A KA x NE 035
๐’…ป U+1217B KA x NUN 031 18 NUNDUM
๐’…ผ U+1217C KA x PI 052
๐’…ฝ U+1217D KA x RU 028
๐’…พ U+1217E KA x SA 032 18* SU6
๐’…ฟ U+1217F KA x SAR 045
๐’†€ U+12180 KA x ล A 048
๐’† U+12181 KA x ล E 050
๐’†‚ U+12182 KA x ล ID 042
๐’†ƒ U+12183 KA x ล U 049
033
19
26
ล UDU2, PU2
๐’†„ U+12184 KA x SIG 068
๐’†… U+12185 KA x SUแธชUR
๐’†† U+12186 KA x TAR
๐’†‡ U+12187 KA x U 056
๐’†ˆ U+12188 KA x U2 043
๐’†‰ U+12189 KA x UD 051
๐’†Š U+1218A KA x UMUM x PA
๐’†‹ U+1218B KA x Uล  039
๐’†Œ U+1218C KA x ZI
๐’† U+1218D KA2 222 133
๐’†Ž U+1218E KA2 crossing KA2
๐’† U+1218F KAB 148 88
๐’† U+12190 KAD2 108 63a
๐’†‘ U+12191 KAD3 109 63c
๐’†’ U+12192 KAD4 568 354b
๐’†“ U+12193 KAD5 569 354b
๐’†” U+12194 KAD5 / KAD5
๐’†• U+12195 KAK 379 230 GAG
๐’†– U+12196 KAK x IGI gunรป
๐’†— U+12197 KAL 496 322
๐’†˜ U+12198 KAL x BAD 497 323 ALAD
๐’†™ U+12199 KAL crossing KAL
๐’†š U+1219A KAM2 595
๐’†› U+1219B KAM4 097
๐’†œ U+1219C KASKAL 302 166
๐’† U+1219D KASKAL LAGAB x U / LAGAB x U 307v ล UBTU6
๐’†ž U+1219E KASKAL / KASKAL LAGAB x U / LAGAB x U 307v ล UBTU7
๐’†Ÿ U+1219F KEล 2 152
๐’†  U+121A0 KI 737 461
๐’†ก U+121A1 KI x BAD 738
๐’†ข U+121A2 KI x U 740 462
๐’†ฃ U+121A3 KI x UD 739 463
๐’†ค U+121A4 KID 484 313 LIL2, GE2, KE4
๐’†ฅ U+121A5 KIN 815 538
๐’†ฆ U+121A6 KISAL 435 249
๐’†ง U+121A7 KIล  678 425
๐’†จ U+121A8 KISIM5 687 404*,1
๐’†ฉ U+121A9 KISIM5 / KISIM5 687v
๐’†ช U+121AA KU 808 536 DUR2, TUKUL, TUล 
๐’†ซ U+121AB KU / แธชI x Aล 2 KU / แธชI x Aล 2
๐’†ฌ U+121AC KU3 745 468 KUG
๐’†ญ U+121AD KU4 087 58
๐’†ฎ U+121AE KU4 variant form
๐’†ฏ U+121AF KU7 171 110
๐’†ฐ U+121B0 KUL 117 72
๐’†ฑ U+121B1 KUL gunรป
๐’†ฒ U+121B2 KUN 131 77
๐’†ณ U+121B3 KUR 578 366
๐’†ด U+121B4 KUR opposing KUR
๐’†ต U+121B5 KUล U2 896 562
๐’†ถ U+121B6 KWU318
๐’†ท U+121B7 LA 089 55
๐’†ธ U+121B8 LAGAB 755 483 NIGIN2
๐’†น U+121B9 LAGAB x A 795 522 AMBAR, BUGIN, BUNIN, SUG
๐’†บ U+121BA LAGAB x A + DA + แธชA 797 523*; 524
๐’†ป U+121BB LAGAB x A + GAR 799 526
๐’†ผ U+121BC LAGAB x A + LAL 798
๐’†ฝ U+121BD LAGAB x AL 773 498
๐’†พ U+121BE LAGAB x AN 758
๐’†ฟ U+121BF LAGAB x Aล  ZIDA tenรป 778 486,1; 504
๐’‡€ U+121C0 LAGAB x BAD 760 486 GIGIR
๐’‡ U+121C1 LAGAB x BI 769 496
๐’‡‚ U+121C2 LAGAB x DAR 765 489
๐’‡ƒ U+121C3 LAGAB x EN 764
๐’‡„ U+121C4 LAGAB x GA 775
๐’‡… U+121C5 LAGAB x GAR 801 528
๐’‡† U+121C6 LAGAB x GUD 772 493
๐’‡‡ U+121C7 LAGAB x GUD + GUD 766 494
๐’‡ˆ U+121C8 LAGAB x แธชA 800 527
๐’‡‰ U+121C9 LAGAB x แธชAL 756 484 ENGUR
๐’‡Š U+121CA LAGAB x แธชI x NUN 784 509
๐’‡‹ U+121CB LAGAB x IGI gunรป
๐’‡Œ U+121CC LAGAB x IM 785 510
๐’‡ U+121CD LAGAB x IM + แธชA
๐’‡Ž U+121CE LAGAB x IM + LU
๐’‡ U+121CF LAGAB x KI 789 514
๐’‡ U+121D0 LAGAB x KIN 794 519
๐’‡‘ U+121D1 LAGAB x KU3 790 513; 506 GARIM
๐’‡’ U+121D2 LAGAB x KUL 761
๐’‡“ U+121D3 LAGAB x KUL + แธชI + A 762
๐’‡” U+121D4 LAGAB x LAGAB 804 529 NIGIN
๐’‡• U+121D5 LAGAB x LIล  782 486,1; 503
๐’‡– U+121D6 LAGAB x LU 793 518
๐’‡— U+121D7 LAGAB x LUL 777 502
๐’‡˜ U+121D8 LAGAB x ME 791 516
๐’‡™ U+121D9 LAGAB x ME + EN 792 517
๐’‡š U+121DA LAGAB x MUล  780 507
๐’‡› U+121DB LAGAB x NE 768 495 UDUB
๐’‡œ U+121DC LAGAB x ล E + SUM 779 491,6; 492
๐’‡ U+121DD LAGAB x ล ITA + GIล  + ERIN2
๐’‡ž U+121DE LAGAB x ล ITA + GIล  tenรป
๐’‡Ÿ U+121DF LAGAB x ล U2 802 520
๐’‡  U+121E0 LAGAB x ล U2 + ล U2 803 521
๐’‡ก U+121E1 LAGAB x SUM 767 491 ZAR
๐’‡ข U+121E2 LAGAB x TAG
๐’‡ฃ U+121E3 LAGAB x TAK4 759 485
๐’‡ค U+121E4 LAGAB x TE + A + SU + NA
๐’‡ฅ U+121E5 LAGAB x U 786 511 GรGIR "wain"; Pรš, TรšL "source, fount"
๐’‡ฆ U+121E6 LAGAB x U + A 787 512
๐’‡ง U+121E7 LAGAB x U + U + U 788 515 BUL
๐’‡จ U+121E8 LAGAB x U2 + Aล  774 499
๐’‡ฉ U+121E9 LAGAB x UD 783 505
๐’‡ช U+121EA LAGAB x Uล  770
๐’‡ซ U+121EB LAGAB squared 805 530
๐’‡ฌ U+121EC LAGAR 719 458 HZL nr. 186
๐’‡ญ U+121ED LAGAR x ล E 722 460 SU7
๐’‡ฎ U+121EE LAGAR x ล E + SUM 723
๐’‡ฏ U+121EF LAGAR gunรป 721 459 DU6
๐’‡ฐ U+121F0 LAGAR gunรป / LAGAR gunรป ล E 721v
๐’‡ฑ U+121F1 LAแธชล U
๐’‡ฒ U+121F2 LAL 750 481 LA2
๐’‡ณ U+121F3 LAL x LAL 751 482 LAL>2
๐’‡ด U+121F4 LAM 693 435
๐’‡ต U+121F5 LAM x KUR 694 436
๐’‡ถ U+121F6 LAM x KUR + RU 694v 436,4
๐’‡ท U+121F7 LI 085 59
๐’‡ธ U+121F8 LIL 544 336
๐’‡น U+121F9 LIMMU2 215 124
๐’‡บ U+121FA LIล  591 377 DILIM2
๐’‡ป U+121FB LU 812 537 UDU
๐’‡ผ U+121FC LU x BAD 814 537,65c; 537* AD3
๐’‡ฝ U+121FD LU2 514 330 "man"
๐’‡พ U+121FE LU2 x AL 523
๐’‡ฟ U+121FF LU2 x BAD 517
๐’ˆ€ U+12200 LU2 x Eล 2
๐’ˆ U+12201 LU2 x Eล 2 tenรป
๐’ˆ‚ U+12202 LU2 x GAN2 tenรป 521
๐’ˆƒ U+12203 LU2 x แธชI x BAD
๐’ˆ„ U+12204 LU2 x IM 526
๐’ˆ… U+12205 LU2 x KAD2 519
๐’ˆ† U+12206 LU2 x KAD3
๐’ˆ‡ U+12207 LU2 x KAD3 + Aล 
๐’ˆˆ U+12208 LU2 x KI 527
๐’ˆ‰ U+12209 LU2 x LA + Aล 
๐’ˆŠ U+1220A LU2 x LAGAB 528
๐’ˆ‹ U+1220B LU2 x ME + EN
๐’ˆŒ U+1220C LU2 x NE 522
๐’ˆ U+1220D LU2 x NU
๐’ˆŽ U+1220E LU2 x SI + Aล 
๐’ˆ U+1220F LU2 x SIK2 + BU 533
๐’ˆ U+12210 LU2 x TUG2 530 AZLAG7
๐’ˆ‘ U+12211 LU2 tenรป 515
๐’ˆ’ U+12212 LU2 crossing LU2
๐’ˆ“ U+12213 LU2 opposing LU2
๐’ˆ” U+12214 LU2 squared
๐’ˆ• U+12215 LU2 ลกeลกig 516; 534 330
๐’ˆ– U+12216 LU3 555 345 GUG2, ล E3 gunรป
๐’ˆ— U+12217 LUGAL 266 151
๐’ˆ˜ U+12218 LUGAL / LUGAL 266v DADRUM?
๐’ˆ™ U+12219 LUGAL opposing LUGAL 266v unattested
๐’ˆš U+1221A LUGAL ลกeลกig
๐’ˆ› U+1221B LUแธช 494 321
๐’ˆœ U+1221C LUL 570 355 NAR
๐’ˆ U+1221D LUM 900 565 แธชUM
๐’ˆž U+1221E LUM / LUM 902 565a; 566a
๐’ˆŸ U+1221F LUM / LUM GAR / GAR 904 566b LUGUD3
๐’ˆ  U+12220 MA 552 342
๐’ˆก U+12221 MA x TAK4
๐’ˆข U+12222 MA gunรป 270 146 แธชASแธชUR
๐’ˆฃ U+12223 MA2 201 122
๐’ˆค U+12224 MAแธช 091 57
๐’ˆฅ U+12225 MAR 483 307
๐’ˆฆ U+12226 MAล  120 74
๐’ˆง U+12227 MAล 2 130 76
๐’ˆจ U+12228 ME 753 532
๐’ˆฉ U+12229 MES 486 533 RID
๐’ˆช U+1222A MI 681 427
๐’ˆซ U+1222B MIN 825 570
๐’ˆฌ U+1222C MU 098 61
๐’ˆญ U+1222D MU / MU 301 169 TAแธช, DAแธช
๐’ˆฎ U+1222E MUG 012 003 oakum
๐’ˆฏ U+1222F MUG gunรป 0013 4 ZADIM
๐’ˆฐ U+12230 MUNSUB 820 543 MUNล UB
๐’ˆฑ U+12231 MURGU2 567
๐’ˆฒ U+12232 MUล  585 374
๐’ˆณ U+12233 MUล  x A
๐’ˆด U+12234 MUล  x KUR
๐’ˆต U+12235 MUล  x ZA
๐’ˆถ U+12236 MUล  / MUล  586 RI8
๐’ˆท U+12237 MUล  / MUล  x A + NA
๐’ˆธ U+12238 MUล  crossing MUล 
๐’ˆน U+12239 MUล 3 153 103 INANNA, INNIN
๐’ˆบ U+1223A MUล 3 x A 154
๐’ˆป U+1223B MUล 3 x A + DI 155
๐’ˆผ U+1223C MUล 3 x DI
๐’ˆฝ U+1223D MUล 3 gunรป
๐’ˆพ U+1223E NA 110 70
๐’ˆฟ U+1223F NA2 689 431 NU2
๐’‰€ U+12240 NAGA 293
๐’‰ U+12241 NAGA inverted
๐’‰‚ U+12242 NAGA x ล U tenรป 294
๐’‰ƒ U+12243 NAGA opposing NAGA
๐’‰„ U+12244 NAGAR 893 560
๐’‰… U+12245 NAM NUTILLU
๐’‰† U+12246 NAM 134 79
๐’‰‡ U+12247 NAM2
๐’‰ˆ U+12248 NE 313 172
๐’‰‰ U+12249 NE x A 315
๐’‰Š U+1224A NE x UD 314
๐’‰‹ U+1224B NE ลกeลกig 312 173 BIL2
๐’‰Œ U+1224C NI 380 231
๐’‰ U+1224D NI x E
๐’‰Ž U+1224E NI2 641 399
๐’‰ U+1224F NIM 690 433 NUM
๐’‰ U+12250 NIM x GAN2 tenรป 691 434
๐’‰‘ U+12251 NIM x GAR + GAN2 tenรป 692 434a
๐’‰’ U+12252 NINDA2 316 176
๐’‰“ U+12253 NINDA2 x AN 320
๐’‰” U+12254 NINDA2 x Aล  317 176,12; 177,2
๐’‰• U+12255 NINDA2 x Aล  + Aล  316 177,3
๐’‰– U+12256 NINDA2 x GUD 327 187,6
๐’‰— U+12257 NINDA2 x ME + GAN2 tenรป
๐’‰˜ U+12258 NINDA2 x NE 326 183 รG "darling", RE
๐’‰™ U+12259 NINDA2 x NUN 324 181 AZU
๐’‰š U+1225A NINDA2 x ล E 333v3
๐’‰› U+1225B NINDA2 x ล E + A AN 333 ล AM2
๐’‰œ U+1225C NINDA2 x ล E + Aล  331
๐’‰ U+1225D NINDA2 x ล E + Aล  + Aล  332
๐’‰ž U+1225E NINDA2 x U2 + Aล  330
๐’‰Ÿ U+1225F NINDA2 x Uล 
๐’‰  U+12260 NISAG 545 337 MURU2, MURUB4, ITI gunรป
๐’‰ก U+12261 NU 112 75
๐’‰ข U+12262 NU11 115 71 ล IR
๐’‰ฃ U+12263 NUN 143 87
๐’‰ค U+12264 NUN LAGAR x GAR
๐’‰ฅ U+12265 NUN LAGAR x MAล 
๐’‰ฆ U+12266 NUN LAGAR x SAL
๐’‰ง U+12267 NUN LAGAR x SAL / NUN LAGAR x SAL
๐’‰จ U+12268 NUN LAGAR x Uล 
๐’‰ฉ U+12269 NUN tenรป 144 87
๐’‰ช U+1226A NUN / NUN 502 325 NIR
๐’‰ซ U+1226B NUN crossing NUN 107 63d
๐’‰ฌ U+1226C NUN crossing NUN LAGAR / LAGAR
๐’‰ญ U+1226D NUNUZ 614 394
๐’‰ฎ U+1226E NUNUZ AB2 x Aล GAB 619 394c,e USAN3
๐’‰ฏ U+1226F NUNUZ AB2 x BI 621 394d MUD3
๐’‰ฐ U+12270 NUNUZ AB2 x DUG 625
๐’‰ฑ U+12271 NUNUZ AB2 x GUD 623
๐’‰ฒ U+12272 NUNUZ AB2 x IGI gunรป 627
๐’‰ณ U+12273 NUNUZ AB2 x KAD3 618
๐’‰ด U+12274 NUNUZ AB2 x LA 616 394b LAแธชTAN
๐’‰ต U+12275 NUNUZ AB2 x NE 620
๐’‰ถ U+12276 NUNUZ AB2 x SILA3 617 394b' LAแธชTAN2
๐’‰ท U+12277 NUNUZ AB2 x U2 (624)
๐’‰ธ U+12278 NUNUZ KISIM5 x BI 621 394d MUD3
๐’‰น U+12279 NUNUZ KISIM5 x BI U 622 MUD3.U
๐’‰บ U+1227A PA 464 295 GIDRU "staff, sceptre", UGULA "overseer", GARZA "office"
๐’‰ป U+1227B PAD 746 469 ล UK
๐’‰ผ U+1227C PAN 685 439
๐’‰ฝ U+1227D PAP 092 60 PAB, KUR2
๐’‰พ U+1227E PEล 2 741; 882 346
๐’‰ฟ U+1227F PI 598 383
๐’Š€ U+12280 PI x A 598v HZL nr. 326
๐’Š U+12281 PI x AB 598v HZL nr. 318
๐’Š‚ U+12282 PI x BI 598v HZL nr. 320
๐’Šƒ U+12283 PI x BU 598v HZL nr. 324
๐’Š„ U+12284 PI x E 598v HZL nr. 322
๐’Š… U+12285 PI x I 598v HZL nr. 319
๐’Š† U+12286 PI x IB 598v HZL nr. 325
๐’Š‡ U+12287 PI x U 598v HZL nr. 323
๐’Šˆ U+12288 PI x U2 598v HZL nr. 321
๐’Š‰ U+12289 PI crossing PI 598v 383,3
๐’ŠŠ U+1228A PIRIG 444
๐’Š‹ U+1228B PIRIG x KAL 295
๐’ŠŒ U+1228C PIRIG x UD 296 130 UG
๐’Š U+1228D PIRIG x ZA 297
๐’ŠŽ U+1228E PIRIG opposing PIRIG
๐’Š U+1228F RA 511 328
๐’Š U+12290 RAB 262 149
๐’Š‘ U+12291 RI 142 86
๐’Š’ U+12292 RU 111 48
๐’Š“ U+12293 SA 172 104
๐’Š” U+12294 SAG NUTILLU
๐’Š• U+12295 SAG 184 115
๐’Š– U+12296 SAG x A 197
๐’Š— U+12297 SAG x DU 187
๐’Š˜ U+12298 SAG x DUB
๐’Š™ U+12299 SAG x แธชA 198
๐’Šš U+1229A SAG x KAK 188
๐’Š› U+1229B SAG x KUR
๐’Šœ U+1229C SAG x LUM 200
๐’Š U+1229D SAG x MI 195
๐’Šž U+1229E SAG x NUN 185
๐’ŠŸ U+1229F SAG x SAL 199
๐’Š  U+122A0 SAG x ล ID 191
๐’Šก U+122A1 SAG x TAB
๐’Šข U+122A2 SAG x U2 192
๐’Šฃ U+122A3 SAG x UB 193
๐’Šค U+122A4 SAG x UM 186
๐’Šฅ U+122A5 SAG x UR 196
๐’Šฆ U+122A6 SAG x Uล  190
๐’Šง U+122A7 SAG / SAG
๐’Šจ U+122A8 SAG gunรป 512 329 DUL3
๐’Šฉ U+122A9 SAL 883 554 MUNUS
๐’Šช U+122AA SAL LAGAB x Aล 2
๐’Šซ U+122AB SANGA2 314
๐’Šฌ U+122AC SAR 541 152
๐’Šญ U+122AD ล A 566 353
๐’Šฎ U+122AE ล A3 599 384 ล AG4
๐’Šฏ U+122AF ล A3 x A 608 390 PEล 4
๐’Šฐ U+122B0 ล A3 x BAD 600
๐’Šฑ U+122B1 ล A3 x GIล  603
๐’Šฒ U+122B2 ล A3 x NE 602 385
๐’Šณ U+122B3 ล A3 x ล U2 609 389
๐’Šด U+122B4 ล A3 x TUR 601
๐’Šต U+122B5 ล A3 x U 605
๐’Šถ U+122B6 ล A3 x U + A 606 388 BIR6
๐’Šท U+122B7 ล A6
๐’Šธ U+122B8 ล AB6 295k
๐’Šน U+122B9 ล AR2 632; 633 396 TI2
๐’Šบ U+122BA ล E 579 367
๐’Šป U+122BB ล E แธชU
๐’Šผ U+122BC ล E / ล E GAD / GAD GAR / GAR
๐’Šฝ U+122BD ล E / ล E TAB / TAB GAR / GAR
๐’Šพ U+122BE ล EG9 878 551
๐’Šฟ U+122BF ล EN 017 008 = SU x A, ALAL, PISAN3, DUR10
๐’‹€ U+122C0 ล Eล  535 331 URI3
๐’‹ U+122C1 ล Eล 2 821 544
๐’‹‚ U+122C2 ล Eล LAM 100 65
๐’‹ƒ U+122C3 ล ID 485 314 LAG
๐’‹„ U+122C4 ล ID x A 489 317 UMBISAG2
๐’‹… U+122C5 ล ID x IM 487 317a
๐’‹† U+122C6 ล IM 362 215
๐’‹‡ U+122C7 ล IM x A 372
๐’‹ˆ U+122C8 ล IM x BAL 363 216,3; 217
๐’‹‰ U+122C9 ล IM x BULUG 367 218,2
๐’‹Š U+122CA ล IM x DIN 366 221
๐’‹‹ U+122CB ล IM x GAR 373 225
๐’‹Œ U+122CC ล IM x IGI 371
๐’‹ U+122CD ล IM x IGI gunรป 368 219*
๐’‹Ž U+122CE ล IM x KUล U2 375 223
๐’‹ U+122CF ล IM x LUL 369
๐’‹ U+122D0 ล IM x MUG 365 216
๐’‹‘ U+122D1 ล IM x SAL 374 222
๐’‹’ U+122D2 ล INIG 93
๐’‹“ U+122D3 ล IR 115 71
๐’‹” U+122D4 ล IR tenรป 116
๐’‹• U+122D5 ล IR / ล IR BUR / BUR
๐’‹– U+122D6 ล ITA 388 233,22 "GA2"
๐’‹— U+122D7 ล U 567 354
๐’‹˜ U+122D8 ล U / inverted ล U
๐’‹™ U+122D9 ล U2 869 545
๐’‹š U+122DA ล UBUR 0022 53
๐’‹› U+122DB SI 181 112
๐’‹œ U+122DC SI gunรป 182 113 SU4
๐’‹ U+122DD SIG 881 592
๐’‹ž U+122DE SIG4 905; 906 567 MURGU; HZL nr. 311
๐’‹Ÿ U+122DF SIG4 / SIG4 ล U2 907 568
๐’‹  U+122E0 SIK2 816 539 SIG2, SIKI
๐’‹ก U+122E1 SILA3 099 62
๐’‹ข U+122E2 SU 016 007 also KUล  "skin, hide"
๐’‹ฃ U+122E3 SU / SU
๐’‹ค U+122E4 SUD 584 373 BU gunรป
๐’‹ฅ U+122E5 SUD2 139
๐’‹ฆ U+122E6 SUแธชUR 646 403
๐’‹ง U+122E7 SUM 292 164
๐’‹จ U+122E8 SUMAล  323 182
๐’‹ฉ U+122E9 SUR 151 101
๐’‹ช U+122EA SUR9 205 122d
๐’‹ซ U+122EB TA 248 139
๐’‹ฌ U+122EC TA* 248v
๐’‹ญ U+122ED TA x แธชI 250
๐’‹ฎ U+122EE TA x MI 251
๐’‹ฏ U+122EF TA gunรป
๐’‹ฐ U+122F0 TAB 209 124
๐’‹ฑ U+122F1 TAB / TAB NI / NI DIล  / DIล 
๐’‹ฒ U+122F2 TAB squared
๐’‹ณ U+122F3 TAG 221 126
๐’‹ด U+122F4 TAG x BI
๐’‹ต U+122F5 TAG x GUD
๐’‹ถ U+122F6 TAG x ล E
๐’‹ท U+122F7 TAG x ล U
๐’‹ธ U+122F8 TAG x TUG2
๐’‹น U+122F9 TAG x UD
๐’‹บ U+122FA TAK4 106 63 KID2
๐’‹ป U+122FB TAR 009 12
๐’‹ผ U+122FC TE 589 376
๐’‹ฝ U+122FD TE gunรป 088 58 URU5, GUR8
๐’‹พ U+122FE TI 118 73
๐’‹ฟ U+122FF TI tenรป
๐’Œ€ U+12300 TIL 114 69 = BAD U+12041
๐’Œ U+12301 TIR 587 375
๐’Œ‚ U+12302 TIR x TAK4
๐’Œƒ U+12303 TIR / TIR 587v NINNI5
๐’Œ„ U+12304 TIR / TIR GAD / GAD GAR / GAR 588 375,46a-b
๐’Œ… U+12305 TU 086 58 DU2
๐’Œ† U+12306 TUG2 809 536 NAM2
๐’Œ‡ U+12307 TUK 827 574 TUG
๐’Œˆ U+12308 TUM 354 207
๐’Œ‰ U+12309 TUR 255 144
๐’ŒŠ U+1230A TUR / TUR ZA / ZA
๐’Œ‹ U+1230B U 661 411 BUR3
๐’ŒŒ U+1230C U GUD
๐’Œ U+1230D U U U 711 472 Eล , "30"
๐’ŒŽ U+1230E U / U PA / PA GAR / GAR
๐’Œ U+1230F U / U SUR / SUR
๐’Œ U+12310 U / U U reversed / U reversed 713 474 MAล GI, BARGI
๐’Œ‘ U+12311 U2 490 318
๐’Œ’ U+12312 UB 504 306
๐’Œ“ U+12313 UD 596 381 BABBAR
๐’Œ” U+12314 UD KUล U2 611 392 Uแธช2
๐’Œ• U+12315 UD x BAD
๐’Œ– U+12316 UD x MI 597 382 ITIMA2
๐’Œ— U+12317 UD x U + U + U
๐’Œ˜ U+12318 UD x U + U + U gunรป
๐’Œ™ U+12319 UD gunรป 542 337* uncertain
๐’Œš U+1231A UD ลกeลกig 0020 52 ITI, UD x Eล 
๐’Œ› U+1231B UD ลกeลกig x BAD
๐’Œœ U+1231C UDUG 833 577; 578
๐’Œ U+1231D UM 238 134
๐’Œž U+1231E UM x LAGAB
๐’ŒŸ U+1231F UM x ME + DA 241
๐’Œ  U+12320 UM x ล A3
๐’Œก U+12321 UM x U 239
๐’Œข U+12322 UMBIN 92b
๐’Œฃ U+12323 UMUM
๐’Œค U+12324 UMUM x KASKAL
๐’Œฅ U+12325 UMUM x PA
๐’Œฆ U+12326 UN 501 312 UG3, UKU3 "man"
๐’Œง U+12327 UN gunรป
๐’Œจ U+12328 UR 828 575
๐’Œฉ U+12329 UR crossing UR 828v 575a
๐’Œช U+1232A UR ลกeลกig 829 reconstruction
๐’Œซ U+1232B UR2 341 203
๐’Œฌ U+1232C UR2 x A + แธชA 346
๐’Œญ U+1232D UR2 x A + NA
๐’Œฎ U+1232E UR2 x AL 343
๐’Œฏ U+1232F UR2 x แธชA 347 185,5
๐’Œฐ U+12330 UR2 x NUN 342 204
๐’Œฑ U+12331 UR2 x U2 344
๐’Œฒ U+12332 UR2 x U2 + Aล  345 185
๐’Œณ U+12333 UR2 x U2 + BI
๐’Œด U+12334 UR4 835 594
๐’Œต U+12335 URI 574 359 BUR/BUR
๐’Œถ U+12336 URI3
๐’Œท U+12337 URU 071 38 Ri2
๐’Œธ U+12338 URU x A 081
๐’Œน U+12339 URU x Aล GAB
๐’Œบ U+1233A URU x BAR 073 40 UKKIN
๐’Œป U+1233B URU x DUN
๐’Œผ U+1233C URU x GA 076
๐’Œฝ U+1233D URU x GAL
๐’Œพ U+1233E URU x GAN2 tenรป 074
๐’Œฟ U+1233F URU x GAR 083
๐’€ U+12340 URU x GU 084
๐’ U+12341 URU x แธชA 082
๐’‚ U+12342 URU x IGI 079
๐’ƒ U+12343 URU x IM
๐’„ U+12344 URU x Iล 
๐’… U+12345 URU x KI
๐’† U+12346 URU x LUM
๐’‡ U+12347 URU x MIN 080
๐’ˆ U+12348 URU x PA
๐’‰ U+12349 URU x ล E
๐’Š U+1234A URU x SIG4
๐’‹ U+1234B URU x TU 072
๐’Œ U+1234C URU x U + GUD
๐’ U+1234D URU x UD 077
๐’Ž U+1234E URU x URUDA 075 41 BANล UR
๐’ U+1234F URUDA 230 132 URUDU
๐’ U+12350 URUDA x U 230
๐’‘ U+12351 Uล  381 211 NITA
๐’’ U+12352 Uล  x A 384 211a
๐’“ U+12353 Uล  x KU 383
๐’” U+12354 Uล  x KUR
๐’• U+12355 Uล  x TAK4 382 51*
๐’– U+12356 Uล X 583 372 UZ, US, Uล 
๐’— U+12357 Uล 2 69
๐’˜ U+12358 Uล UMX
๐’™ U+12359 UTUKI
๐’š U+1235A UZ3 203 122b
๐’› U+1235B UZ3 x KASKAL 204 122c
๐’œ U+1235C UZU 311 171
๐’ U+1235D ZA 851 586
๐’ž U+1235E ZA tenรป 854 379; 380 AS4, ERIM tenรป
๐’Ÿ U+1235F ZA squared x KUR 855 531; 588
๐’  U+12360 ZAG 540 332
๐’ก U+12361 ZAMX
๐’ข U+12362 ZE2 259 147 ZI2, AB x PA
๐’ฃ U+12363 ZI 140 84
๐’ค U+12364 ZI / ZI 101 66
๐’ฅ U+12365 ZI3 536
๐’ฆ U+12366 ZIB 628 395
๐’ง U+12367 ZIB KABA tenรป
๐’จ U+12368 ZIG 336 190 ZIK, NINDA x Eล 
๐’ฉ U+12369 ZIZ2 339
๐’ช U+1236A ZU 015 006
๐’ซ U+1236B ZU5
๐’ฌ U+1236C ZU5 x A
๐’ญ U+1236D ZUBUR 648 364/5,2-3
๐’ฎ U+1236E ZUM 884 555

Charts[edit]

Sumero-Akkadian Cuneiform script was added to the Unicode Standard in July, 2006 with the release of version 5.0.

Cuneiform[edit]

The Unicode block for Sumero-Akkadian Cuneiform is U+12000โ€“U+123FF:

Cuneiform[1][2]
Official Unicode Consortium code chart (PDF)
  0 1 2 3 4 5 6 7 8 9 A B C D E F
U+1200x ๐’€€ ๐’€ ๐’€‚ ๐’€ƒ ๐’€„ ๐’€… ๐’€† ๐’€‡ ๐’€ˆ ๐’€‰ ๐’€Š ๐’€‹ ๐’€Œ ๐’€ ๐’€Ž ๐’€
U+1201x ๐’€ ๐’€‘ ๐’€’ ๐’€“ ๐’€” ๐’€• ๐’€– ๐’€— ๐’€˜ ๐’€™ ๐’€š ๐’€› ๐’€œ ๐’€ ๐’€ž ๐’€Ÿ
U+1202x ๐’€  ๐’€ก ๐’€ข ๐’€ฃ ๐’€ค ๐’€ฅ ๐’€ฆ ๐’€ง ๐’€จ ๐’€ฉ ๐’€ช ๐’€ซ ๐’€ฌ ๐’€ญ ๐’€ฎ ๐’€ฏ
U+1203x ๐’€ฐ ๐’€ฑ ๐’€ฒ ๐’€ณ ๐’€ด ๐’€ต ๐’€ถ ๐’€ท ๐’€ธ ๐’€น ๐’€บ ๐’€ป ๐’€ผ ๐’€ฝ ๐’€พ ๐’€ฟ
U+1204x ๐’€ ๐’ ๐’‚ ๐’ƒ ๐’„ ๐’… ๐’† ๐’‡ ๐’ˆ ๐’‰ ๐’Š ๐’‹ ๐’Œ ๐’ ๐’Ž ๐’
U+1205x ๐’ ๐’‘ ๐’’ ๐’“ ๐’” ๐’• ๐’– ๐’— ๐’˜ ๐’™ ๐’š ๐’› ๐’œ ๐’ ๐’ž ๐’Ÿ
U+1206x ๐’  ๐’ก ๐’ข ๐’ฃ ๐’ค ๐’ฅ ๐’ฆ ๐’ง ๐’จ ๐’ฉ ๐’ช ๐’ซ ๐’ฌ ๐’ญ ๐’ฎ ๐’ฏ
U+1207x ๐’ฐ ๐’ฑ ๐’ฒ ๐’ณ ๐’ด ๐’ต ๐’ถ ๐’ท ๐’ธ ๐’น ๐’บ ๐’ป ๐’ผ ๐’ฝ ๐’พ ๐’ฟ
U+1208x ๐’‚€ ๐’‚ ๐’‚‚ ๐’‚ƒ ๐’‚„ ๐’‚… ๐’‚† ๐’‚‡ ๐’‚ˆ ๐’‚‰ ๐’‚Š ๐’‚‹ ๐’‚Œ ๐’‚ ๐’‚Ž ๐’‚
U+1209x ๐’‚ ๐’‚‘ ๐’‚’ ๐’‚“ ๐’‚” ๐’‚• ๐’‚– ๐’‚— ๐’‚˜ ๐’‚™ ๐’‚š ๐’‚› ๐’‚œ ๐’‚ ๐’‚ž ๐’‚Ÿ
U+120Ax ๐’‚  ๐’‚ก ๐’‚ข ๐’‚ฃ ๐’‚ค ๐’‚ฅ ๐’‚ฆ ๐’‚ง ๐’‚จ ๐’‚ฉ ๐’‚ช ๐’‚ซ ๐’‚ฌ ๐’‚ญ ๐’‚ฎ ๐’‚ฏ
U+120Bx ๐’‚ฐ ๐’‚ฑ ๐’‚ฒ ๐’‚ณ ๐’‚ด ๐’‚ต ๐’‚ถ ๐’‚ท ๐’‚ธ ๐’‚น ๐’‚บ ๐’‚ป ๐’‚ผ ๐’‚ฝ ๐’‚พ ๐’‚ฟ
U+120Cx ๐’ƒ€ ๐’ƒ ๐’ƒ‚ ๐’ƒƒ ๐’ƒ„ ๐’ƒ… ๐’ƒ† ๐’ƒ‡ ๐’ƒˆ ๐’ƒ‰ ๐’ƒŠ ๐’ƒ‹ ๐’ƒŒ ๐’ƒ ๐’ƒŽ ๐’ƒ
U+120Dx ๐’ƒ ๐’ƒ‘ ๐’ƒ’ ๐’ƒ“ ๐’ƒ” ๐’ƒ• ๐’ƒ– ๐’ƒ— ๐’ƒ˜ ๐’ƒ™ ๐’ƒš ๐’ƒ› ๐’ƒœ ๐’ƒ ๐’ƒž ๐’ƒŸ
U+120Ex ๐’ƒ  ๐’ƒก ๐’ƒข ๐’ƒฃ ๐’ƒค ๐’ƒฅ ๐’ƒฆ ๐’ƒง ๐’ƒจ ๐’ƒฉ ๐’ƒช ๐’ƒซ ๐’ƒฌ ๐’ƒญ ๐’ƒฎ ๐’ƒฏ
U+120Fx ๐’ƒฐ ๐’ƒฑ ๐’ƒฒ ๐’ƒณ ๐’ƒด ๐’ƒต ๐’ƒถ ๐’ƒท ๐’ƒธ ๐’ƒน ๐’ƒบ ๐’ƒป ๐’ƒผ ๐’ƒฝ ๐’ƒพ ๐’ƒฟ
U+1210x ๐’„€ ๐’„ ๐’„‚ ๐’„ƒ ๐’„„ ๐’„… ๐’„† ๐’„‡ ๐’„ˆ ๐’„‰ ๐’„Š ๐’„‹ ๐’„Œ ๐’„ ๐’„Ž ๐’„
U+1211x ๐’„ ๐’„‘ ๐’„’ ๐’„“ ๐’„” ๐’„• ๐’„– ๐’„— ๐’„˜ ๐’„™ ๐’„š ๐’„› ๐’„œ ๐’„ ๐’„ž ๐’„Ÿ
U+1212x ๐’„  ๐’„ก ๐’„ข ๐’„ฃ ๐’„ค ๐’„ฅ ๐’„ฆ ๐’„ง ๐’„จ ๐’„ฉ ๐’„ช ๐’„ซ ๐’„ฌ ๐’„ญ ๐’„ฎ ๐’„ฏ
U+1213x ๐’„ฐ ๐’„ฑ ๐’„ฒ ๐’„ณ ๐’„ด ๐’„ต ๐’„ถ ๐’„ท ๐’„ธ ๐’„น ๐’„บ ๐’„ป ๐’„ผ ๐’„ฝ ๐’„พ ๐’„ฟ
U+1214x ๐’…€ ๐’… ๐’…‚ ๐’…ƒ ๐’…„ ๐’…… ๐’…† ๐’…‡ ๐’…ˆ ๐’…‰ ๐’…Š ๐’…‹ ๐’…Œ ๐’… ๐’…Ž ๐’…
U+1215x ๐’… ๐’…‘ ๐’…’ ๐’…“ ๐’…” ๐’…• ๐’…– ๐’…— ๐’…˜ ๐’…™ ๐’…š ๐’…› ๐’…œ ๐’… ๐’…ž ๐’…Ÿ
U+1216x ๐’…  ๐’…ก ๐’…ข ๐’…ฃ ๐’…ค ๐’…ฅ ๐’…ฆ ๐’…ง ๐’…จ ๐’…ฉ ๐’…ช ๐’…ซ ๐’…ฌ ๐’…ญ ๐’…ฎ ๐’…ฏ
U+1217x ๐’…ฐ ๐’…ฑ ๐’…ฒ ๐’…ณ ๐’…ด ๐’…ต ๐’…ถ ๐’…ท ๐’…ธ ๐’…น ๐’…บ ๐’…ป ๐’…ผ ๐’…ฝ ๐’…พ ๐’…ฟ
U+1218x ๐’†€ ๐’† ๐’†‚ ๐’†ƒ ๐’†„ ๐’†… ๐’†† ๐’†‡ ๐’†ˆ ๐’†‰ ๐’†Š ๐’†‹ ๐’†Œ ๐’† ๐’†Ž ๐’†
U+1219x ๐’† ๐’†‘ ๐’†’ ๐’†“ ๐’†” ๐’†• ๐’†– ๐’†— ๐’†˜ ๐’†™ ๐’†š ๐’†› ๐’†œ ๐’† ๐’†ž ๐’†Ÿ
U+121Ax ๐’†  ๐’†ก ๐’†ข ๐’†ฃ ๐’†ค ๐’†ฅ ๐’†ฆ ๐’†ง ๐’†จ ๐’†ฉ ๐’†ช ๐’†ซ ๐’†ฌ ๐’†ญ ๐’†ฎ ๐’†ฏ
U+121Bx ๐’†ฐ ๐’†ฑ ๐’†ฒ ๐’†ณ ๐’†ด ๐’†ต ๐’†ถ ๐’†ท ๐’†ธ ๐’†น ๐’†บ ๐’†ป ๐’†ผ ๐’†ฝ ๐’†พ ๐’†ฟ
U+121Cx ๐’‡€ ๐’‡ ๐’‡‚ ๐’‡ƒ ๐’‡„ ๐’‡… ๐’‡† ๐’‡‡ ๐’‡ˆ ๐’‡‰ ๐’‡Š ๐’‡‹ ๐’‡Œ ๐’‡ ๐’‡Ž ๐’‡
U+121Dx ๐’‡ ๐’‡‘ ๐’‡’ ๐’‡“ ๐’‡” ๐’‡• ๐’‡– ๐’‡— ๐’‡˜ ๐’‡™ ๐’‡š ๐’‡› ๐’‡œ ๐’‡ ๐’‡ž ๐’‡Ÿ
U+121Ex ๐’‡  ๐’‡ก ๐’‡ข ๐’‡ฃ ๐’‡ค ๐’‡ฅ ๐’‡ฆ ๐’‡ง ๐’‡จ ๐’‡ฉ ๐’‡ช ๐’‡ซ ๐’‡ฌ ๐’‡ญ ๐’‡ฎ ๐’‡ฏ
U+121Fx ๐’‡ฐ ๐’‡ฑ ๐’‡ฒ ๐’‡ณ ๐’‡ด ๐’‡ต ๐’‡ถ ๐’‡ท ๐’‡ธ ๐’‡น ๐’‡บ ๐’‡ป ๐’‡ผ ๐’‡ฝ ๐’‡พ ๐’‡ฟ
U+1220x ๐’ˆ€ ๐’ˆ ๐’ˆ‚ ๐’ˆƒ ๐’ˆ„ ๐’ˆ… ๐’ˆ† ๐’ˆ‡ ๐’ˆˆ ๐’ˆ‰ ๐’ˆŠ ๐’ˆ‹ ๐’ˆŒ ๐’ˆ ๐’ˆŽ ๐’ˆ
U+1221x ๐’ˆ ๐’ˆ‘ ๐’ˆ’ ๐’ˆ“ ๐’ˆ” ๐’ˆ• ๐’ˆ– ๐’ˆ— ๐’ˆ˜ ๐’ˆ™ ๐’ˆš ๐’ˆ› ๐’ˆœ ๐’ˆ ๐’ˆž ๐’ˆŸ
U+1222x ๐’ˆ  ๐’ˆก ๐’ˆข ๐’ˆฃ ๐’ˆค ๐’ˆฅ ๐’ˆฆ ๐’ˆง ๐’ˆจ ๐’ˆฉ ๐’ˆช ๐’ˆซ ๐’ˆฌ ๐’ˆญ ๐’ˆฎ ๐’ˆฏ
U+1223x ๐’ˆฐ ๐’ˆฑ ๐’ˆฒ ๐’ˆณ ๐’ˆด ๐’ˆต ๐’ˆถ ๐’ˆท ๐’ˆธ ๐’ˆน ๐’ˆบ ๐’ˆป ๐’ˆผ ๐’ˆฝ ๐’ˆพ ๐’ˆฟ
U+1224x ๐’‰€ ๐’‰ ๐’‰‚ ๐’‰ƒ ๐’‰„ ๐’‰… ๐’‰† ๐’‰‡ ๐’‰ˆ ๐’‰‰ ๐’‰Š ๐’‰‹ ๐’‰Œ ๐’‰ ๐’‰Ž ๐’‰
U+1225x ๐’‰ ๐’‰‘ ๐’‰’ ๐’‰“ ๐’‰” ๐’‰• ๐’‰– ๐’‰— ๐’‰˜ ๐’‰™ ๐’‰š ๐’‰› ๐’‰œ ๐’‰ ๐’‰ž ๐’‰Ÿ
U+1226x ๐’‰  ๐’‰ก ๐’‰ข ๐’‰ฃ ๐’‰ค ๐’‰ฅ ๐’‰ฆ ๐’‰ง ๐’‰จ ๐’‰ฉ ๐’‰ช ๐’‰ซ ๐’‰ฌ ๐’‰ญ ๐’‰ฎ ๐’‰ฏ
U+1227x ๐’‰ฐ ๐’‰ฑ ๐’‰ฒ ๐’‰ณ ๐’‰ด ๐’‰ต ๐’‰ถ ๐’‰ท ๐’‰ธ ๐’‰น ๐’‰บ ๐’‰ป ๐’‰ผ ๐’‰ฝ ๐’‰พ ๐’‰ฟ
U+1228x ๐’Š€ ๐’Š ๐’Š‚ ๐’Šƒ ๐’Š„ ๐’Š… ๐’Š† ๐’Š‡ ๐’Šˆ ๐’Š‰ ๐’ŠŠ ๐’Š‹ ๐’ŠŒ ๐’Š ๐’ŠŽ ๐’Š
U+1229x ๐’Š ๐’Š‘ ๐’Š’ ๐’Š“ ๐’Š” ๐’Š• ๐’Š– ๐’Š— ๐’Š˜ ๐’Š™ ๐’Šš ๐’Š› ๐’Šœ ๐’Š ๐’Šž ๐’ŠŸ
U+122Ax ๐’Š  ๐’Šก ๐’Šข ๐’Šฃ ๐’Šค ๐’Šฅ ๐’Šฆ ๐’Šง ๐’Šจ ๐’Šฉ ๐’Šช ๐’Šซ ๐’Šฌ ๐’Šญ ๐’Šฎ ๐’Šฏ
U+122Bx ๐’Šฐ ๐’Šฑ ๐’Šฒ ๐’Šณ ๐’Šด ๐’Šต ๐’Šถ ๐’Šท ๐’Šธ ๐’Šน ๐’Šบ ๐’Šป ๐’Šผ ๐’Šฝ ๐’Šพ ๐’Šฟ
U+122Cx ๐’‹€ ๐’‹ ๐’‹‚ ๐’‹ƒ ๐’‹„ ๐’‹… ๐’‹† ๐’‹‡ ๐’‹ˆ ๐’‹‰ ๐’‹Š ๐’‹‹ ๐’‹Œ ๐’‹ ๐’‹Ž ๐’‹
U+122Dx ๐’‹ ๐’‹‘ ๐’‹’ ๐’‹“ ๐’‹” ๐’‹• ๐’‹– ๐’‹— ๐’‹˜ ๐’‹™ ๐’‹š ๐’‹› ๐’‹œ ๐’‹ ๐’‹ž ๐’‹Ÿ
U+122Ex ๐’‹  ๐’‹ก ๐’‹ข ๐’‹ฃ ๐’‹ค ๐’‹ฅ ๐’‹ฆ ๐’‹ง ๐’‹จ ๐’‹ฉ ๐’‹ช ๐’‹ซ ๐’‹ฌ ๐’‹ญ ๐’‹ฎ ๐’‹ฏ
U+122Fx ๐’‹ฐ ๐’‹ฑ ๐’‹ฒ ๐’‹ณ ๐’‹ด ๐’‹ต ๐’‹ถ ๐’‹ท ๐’‹ธ ๐’‹น ๐’‹บ ๐’‹ป ๐’‹ผ ๐’‹ฝ ๐’‹พ ๐’‹ฟ
U+1230x ๐’Œ€ ๐’Œ ๐’Œ‚ ๐’Œƒ ๐’Œ„ ๐’Œ… ๐’Œ† ๐’Œ‡ ๐’Œˆ ๐’Œ‰ ๐’ŒŠ ๐’Œ‹ ๐’ŒŒ ๐’Œ ๐’ŒŽ ๐’Œ
U+1231x ๐’Œ ๐’Œ‘ ๐’Œ’ ๐’Œ“ ๐’Œ” ๐’Œ• ๐’Œ– ๐’Œ— ๐’Œ˜ ๐’Œ™ ๐’Œš ๐’Œ› ๐’Œœ ๐’Œ ๐’Œž ๐’ŒŸ
U+1232x ๐’Œ  ๐’Œก ๐’Œข ๐’Œฃ ๐’Œค ๐’Œฅ ๐’Œฆ ๐’Œง ๐’Œจ ๐’Œฉ ๐’Œช ๐’Œซ ๐’Œฌ ๐’Œญ ๐’Œฎ ๐’Œฏ
U+1233x ๐’Œฐ ๐’Œฑ ๐’Œฒ ๐’Œณ ๐’Œด ๐’Œต ๐’Œถ ๐’Œท ๐’Œธ ๐’Œน ๐’Œบ ๐’Œป ๐’Œผ ๐’Œฝ ๐’Œพ ๐’Œฟ
U+1234x ๐’€ ๐’ ๐’‚ ๐’ƒ ๐’„ ๐’… ๐’† ๐’‡ ๐’ˆ ๐’‰ ๐’Š ๐’‹ ๐’Œ ๐’ ๐’Ž ๐’
U+1235x ๐’ ๐’‘ ๐’’ ๐’“ ๐’” ๐’• ๐’– ๐’— ๐’˜ ๐’™ ๐’š ๐’› ๐’œ ๐’ ๐’ž ๐’Ÿ
U+1236x ๐’  ๐’ก ๐’ข ๐’ฃ ๐’ค ๐’ฅ ๐’ฆ ๐’ง ๐’จ ๐’ฉ ๐’ช ๐’ซ ๐’ฌ ๐’ญ ๐’ฎ ๐’ฏ
U+1237x ๐’ฐ ๐’ฑ ๐’ฒ ๐’ณ ๐’ด ๐’ต ๐’ถ ๐’ท ๐’ธ ๐’น ๐’บ ๐’ป ๐’ผ ๐’ฝ ๐’พ ๐’ฟ
U+1238x ๐’Ž€ ๐’Ž ๐’Ž‚ ๐’Žƒ ๐’Ž„ ๐’Ž… ๐’Ž† ๐’Ž‡ ๐’Žˆ ๐’Ž‰ ๐’ŽŠ ๐’Ž‹ ๐’ŽŒ ๐’Ž ๐’ŽŽ ๐’Ž
U+1239x ๐’Ž ๐’Ž‘ ๐’Ž’ ๐’Ž“ ๐’Ž” ๐’Ž• ๐’Ž– ๐’Ž— ๐’Ž˜
U+123Ax
U+123Bx
U+123Cx
U+123Dx
U+123Ex
U+123Fx
Notes
1.^ As of Unicode version 7.0
2.^ Grey areas indicate non-assigned code points

See also[edit]

References[edit]

  1. ^ "Unicode character database". The Unicode Standard. Retrieved 22 March 2013. 
  2. ^ Cuneiform Unicode.org chart (PDF)
  3. ^ Unicode cuneiform
  4. ^ L. Anderson, June 2004
  5. ^ (after Anderson's sign list)

External links[edit]

Font packages[edit]