Environmental impact of the energy industry

From Wikipedia, the free encyclopedia
  (Redirected from Curbing fossil fuel usage)
Jump to: navigation, search
World consumption of primary energy by energy type.[1]
Energy consumption per capita per country (2001). Red hues indicate increase, green hues decrease of consumption during the 1990s.[2]

The environmental impact of the energy industry is diverse. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years.[3] In recent years there has been a trend towards the increased commercialization of various renewable energy sources.

Consumption of fossil fuel resources leads to global warming and climate change. In most parts of the world little change is being made to slow these changes. If the peak oil theory proves true, and more explorations of viable alternative energy sources are made, our impact could be less hostile to our environment.

Rapidly advancing technologies can achieve a transition of energy generation, water and waste management, and food production towards better environmental and energy usage practices using methods of systems ecology and industrial ecology.[4][5]

Issues[edit]

Climate change[edit]

Global mean surface temperature anomaly relative to 1961–1990.

The scientific consensus on global warming and climate change is that it is caused by anthropogenic greenhouse gas emissions, the majority of which comes from burning fossil fuels with deforestation and some agricultural practices being also major contributors. [6]

Although there is a highly publicized denial of climate change, the vast majority of scientists working in climatology accept that it is due to human activity. The IPCC report Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability predicts that climate change will cause shortages of food and water and increased risk of flooding that will affect billions of people, particularly those living in poverty.[7]

One measurement of greenhouse gas related and other Externality comparisons between energy sources can be found in the ExternE project by the Paul Scherrer Institut and the University of Stuttgart which was funded by the European Commission.[8] According to that study,[9] hydroelectric electricity produces the lowest CO2 emissions, wind produces the second-lowest, nuclear energy produces the third-lowest and solar photovoltaic produces the fourth-lowest.[9]

Similarly, the same research study (ExternE, Externalities of Energy), undertaken from 1995 to 2005 found that the cost of producing electricity from coal or oil would double over its present value, and the cost of electricity production from gas would increase by 30% if external costs such as damage to the environment and to human health, from the airborne particulate matter, nitrogen oxides, chromium VI and arsenic emissions produced by these sources, were taken into account. It was estimated in the study that these external, downstream, fossil fuel costs amount up to 1%-2% of the EU’s entire Gross Domestic Product (GDP), and this was before the external cost of global warming from these sources was even included.[10] The study also found that the environmental and health costs of nuclear power, per unit of energy delivered, was €0.0019/kWh, which was found to be lower than that of many renewable sources including that caused by biomass and photovoltaic solar panels, and was thirty times lower than coal at €0.06/kWh, or 6 cents/kWh, with the energy sources of the lowest external environmental and health costs associated with it being wind power at €0.0009/kWh.[11]

Biofuel use[edit]

Biofuel is defined as solid, liquid or gaseous fuel obtained from relatively recently lifeless or living biological material and is different from fossil fuels, which are derived from long-dead biological material. Various plants and plant-derived materials are used for biofuel manufacturing.

Bio-diesel[edit]

High use of bio-diesel leads to land use changes including deforestation.[citation needed]

Firewood[edit]

Unsustainable firewood harvesting can lead to loss of biodiversity and erosion due to loss of forest cover. An example of this is a 40 year study done by the University of Leeds of African forests, which account for a third of the world's total tropical forest which demonstrates that Africa is a significant carbon sink. A climate change expert, Lee White states that "To get an idea of the value of the sink, the removal of nearly 5 billion tonnes of carbon dioxide from the atmosphere by intact tropical forests is at issue.

According to the U.N. the African continent is losing forest twice as fast as the rest of the world. "Once upon a time, Africa boasted seven million square kilometers of forest but a third of that has been lost, most of it to charcoal."[12]

Fossil fuel use[edit]

Global fossil carbon emission by fuel type, 1800-2007 AD.

The three fossil fuel types are coal, petroleum and natural gas. It was estimated by the Energy Information Administration that in 2006 primary sources of energy consisted of petroleum 36.8%, coal 26.6%, natural gas 22.9%, amounting to an 86% share for fossil fuels in primary energy production in the world.[13]

The burning of fossil fuels produces around 21.3 billion tonnes (21.3 gigatonnes) of carbon dioxide per year, but it is estimated that natural processes can only absorb about half of that amount, so there is a net increase of 10.65 billion tonnes of atmospheric carbon dioxide per year (one tonne of atmospheric carbon is equivalent to 44/12 or 3.7 tonnes of carbon dioxide).[14] Carbon dioxide is one of the greenhouse gases that enhances radiative forcing and contributes to global warming, causing the average surface temperature of the Earth to rise in response, which climate scientists agree will cause major adverse effects.

Coal[edit]

The environmental impact of coal mining and burning is diverse.[15] Legislation passed by the U.S. Congress in 1990 required the United States Environmental Protection Agency (EPA) to issue a plan to alleviate toxic pollution from coal-fired power plants. After delay and litigation, the EPA now has a court-imposed deadline of March 16, 2011, to issue its report.

Petroleum[edit]

A beach after an oil spill

The environmental impact of petroleum is often negative because it is toxic to almost all forms of life. The possibility of climate change exists. Petroleum, commonly referred to as oil, is closely linked to virtually all aspects of present society, especially for transportation and heating for both homes and for commercial activities.

Gas[edit]

Natural gas is often described as the cleanest fossil fuel, producing less carbon dioxide per joule delivered than either coal or oil.,[16] and far fewer pollutants than other fossil fuels. However, in absolute terms it does contribute substantially to global carbon emissions, and this contribution is projected to grow. According to the IPCC Fourth Assessment Report,[17] in 2004 natural gas produced about 5,300 Mt/yr of CO2 emissions, while coal and oil produced 10,600 and 10,200 respectively (Figure 4.4); but by 2030, according to an updated version of the SRES B2 emissions scenario, natural gas would be the source of 11,000 Mt/yr, with coal and oil now 8,400 and 17,200 respectively. (Total global emissions for 2004 were estimated at over 27,200 Mt.)

In addition, natural gas itself is a greenhouse gas far more potent than carbon dioxide when released into the atmosphere but is released in smaller amounts.

Electricity generation[edit]

The environmental impact of electricity generation is significant because modern society uses large amounts of electrical power. This power is normally generated at power plants that convert some other kind of energy into electrical power. Each such system has advantages and disadvantages, but many of them pose environmental concerns.

Reservoirs[edit]

The environmental impact of reservoirs is coming under ever increasing scrutiny as the world demand for water and energy increases and the number and size of reservoirs increases. Dams and the reservoirs can be used to supply drinking water, generate hydroelectric power, increasing the water supply for irrigation, provide recreational opportunities and to improve certain aspects of the environment. However, adverse environmental and sociological impacts have also been identified during and after many reservoir constructions. Whether reservoir projects are ultimately beneficial or detrimental—to both the environment and surrounding human populations— has been debated since the 1960s and probably long before that. In 1960 the construction of Llyn Celyn and the flooding of Capel Celyn provoked political uproar which continues to this day. More recently, the construction of Three Gorges Dam and other similar projects throughout Asia, Africa and Latin America have generated considerable environmental and political debate.

Nuclear power[edit]

Nuclear power activities involving the environment; mining, enrichment, generation and geological disposal.

The environmental impact of nuclear power results from the nuclear fuel cycle, operation, and the effects of accidents such as the Chernobyl disaster (1986) and Fukushima I nuclear accidents (2011).

Wind power[edit]

Compared to the environmental effects of fuel-burning energy sources, the environmental effects of wind power are relatively minor. Wind power consumes no fuel, and emits almost negligible air pollution, unlike fossil fuel power sources. The energy consumed to manufacture and transport the materials used to build a wind power plant is paid back with a typical energy return on investment of about 20, placing wind in a favorable position relative to other forms of power generation such as fossil fuels, nuclear and solar. [18] While a wind farm may cover a large area of land, many land uses such as agriculture are compatible, with only small areas of turbine foundations and infrastructure made unavailable for use.[19]

A study published in Atmospheric Chemistry and Physics suggested that using wind turbines to meet 10 percent of global energy demand in 2100 could have a global warming effect, causing temperatures to rise by 1 °C (1.8 °F) in the regions on land where the wind farms are installed, including a smaller increase in areas beyond those regions. This is due to the effect of wind turbines on both horizontal and vertical atmospheric circulation. Whilst turbines installed in water would have a cooling effect, the net impact on global surface temperatures would be an increase of 0.15 °C (0.27 °F). Author Ron Prinn cautioned against interpreting the study "as an argument against wind power, urging that it be used to guide future research". "We’re not pessimistic about wind," he said. "We haven’t absolutely proven this effect, and we’d rather see that people do further research".[20]

Mitigation[edit]

Energy conservation[edit]

Main article: Energy conservation

Energy conservation refers to efforts made to reduce energy consumption. Energy conservation can be achieved through increased efficient energy use, in conjunction with decreased energy consumption and/or reduced consumption from conventional energy sources.

Energy conservation can result in increased financial capital, environmental quality, national security, personal security, and human comfort.[citation needed] Individuals and organizations that are direct consumers of energy choose to conserve energy to reduce energy costs and promote economic security. Industrial and commercial users can increase energy use efficiency to maximize profit.

Energy policy[edit]

Main article: Energy policy

Energy policy is the manner in which a given entity (often governmental) has decided to address issues of energy development including energy production, distribution and consumption. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques.

Sustainable energy[edit]

Main article: Sustainable energy

Sustainable energy is the provision of energy that meets the needs of the present without compromising the ability of future generations to meet their needs. Sustainable energy sources are most often regarded as including all renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power, geothermal energy, bioenergy, and tidal power. It usually also includes technologies that improve energy efficiency.

Economic instruments[edit]

Various economic instruments can be used to steer society toward sustainable energy. Some of these methods include ecotaxes and emissions trading. Green consumerism is enhanced on free energy markets. In Europe environmental NGOs have developed EKOenergy label to help consumers to choose more sustainable electricity products.

Ecological economics aims to address some of the interdependence and coevolution of human economies and natural ecosystems over time and space.[21] Environmental economics, is the mainstream economic analysis of the environment, which views the economy as a subsystem of the ecosystem, while ecological economics emphasis is upon preserving natural capital.[22][23]

Biophysical economics sometimes referred to as thermoeconomics is discussed in the field of ecological economics and relates directly to energy conversion, which itself is related to the fields of sustainability and sustainable development especially in the area of carbon burning.[24]

See also[edit]

References[edit]

  1. ^ BP: Workbook of historical data (xlsx), London, 2012
  2. ^ "Energy Consumption: Total energy consumption per capita". Earth trends Database. World Resources Institute. Retrieved 2011-04-21. 
  3. ^ Bowman, D. M. J. S. (2009). "Fire in the Earth System". Science 324 (5926): 481–4. Bibcode:2009Sci...324..481B. doi:10.1126/science.1163886. PMID 19390038. 
  4. ^ Kay, J. (2002). Kay, J.J. "On Complexity Theory, Exergy and Industrial Ecology: Some Implications for Construction Ecology." In: Kibert C., Sendzimir J., Guy, B. (eds.) Construction Ecology: Nature as the Basis for Green Buildings, pp. 72–107. London: Spon Press. Retrieved on: 2009-04-01.
  5. ^ Baksh, B. and Fiksel J. (June 2003) "The Quest for Sustainability: Challenges for Process Systems Engineering." American Institute Of Chemical Engineers Journal 49(6):1355. Retrieved on: 2009-04-04.
  6. ^ http://www.epa.gov/climatechange/basics/
  7. ^ "Billions face climate change risk". BBC NEWS Science/Nature. 2007-04-06. Retrieved 2011-04-22. 
  8. ^ Rabl A. et al. (August 2005). "Final Technical Report, Version 2". Externalities of Energy: Extension of Accounting Framework and Policy Applications. European Commission. 
  9. ^ a b "External costs of electricity systems (graph format)". ExternE-Pol. Technology Assessment / GaBE (Paul Scherrer Institut). 2005. 
  10. ^ New research reveals the real costs of electricity in Europe
  11. ^ ExternE-Pol, External costs of current and advanced electricity systems, associated with emissions from the operation of power plants and with the rest of the energy chain, final technical report. See figure 9, 9b and figure 11
  12. ^ Rowan, Anthea (2009-09-25). "Africa's burning charcoal problem". BBC NEWS Africa. Retrieved 2011-04-22. 
  13. ^ "International Energy Annual 2006". Retrieved 2009-02-08. 
  14. ^ "US Department of Energy on greenhouse gases". Retrieved 2007-09-09. 
  15. ^ "Environmental impacts of coal power: air pollution". Union of Concerned Scientists. 2009. Retrieved 2011-04-22. 
  16. ^ Natural Gas and the Environment
  17. ^ IPCC Fourth Assessment Report (Working Group III Report, Chapter 4)
  18. ^ Meta-analysis of net energy return for wind power systems; Kubiszewski et al. 2010. "The average EROI for just the operational studies is 19.8(n=60; std. dev = 13.7). This places wind in a favorable position relative to fossil fuels, nuclear, and solarpower generation technologies in terms of EROI"
  19. ^ Why Australia needs wind power
  20. ^ http://web.mit.edu/newsoffice/2010/climate-wind-0312.html MIT analysis suggests generating electricity from large-scale wind farms could influence climate — and not necessarily in the desired way.
  21. ^ Xepapadeas, Anastasios (2008). Steven N. Durlauf and Lawrence E. Blume, ed. Ecological economics. The New Palgrave Dictionary of Economics, 2nd Edition. Palgrave Macmillan. doi:10.1057/9780230226203.0423. 
  22. ^ Robert Nadeau (Lead Author);Cutler Cleveland (Topic Editor) (2008-08-26). "Environmental and ecological economics". In Cutler J. Cleveland. Encyclopedia of Earth. Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment. Retrieved 2011-04-21. 
  23. ^ Jeroen, C.J.M.; Bergh, van den (2000). Ecological Economics: Themes, Approaches, and Differences with Environmental Economics. Discussion Paper TI 2000-080/3. Tinbergen Institute. pp. 1–25. Retrieved 2009-07-02. 
  24. ^ Cutler Cleveland (Lead Author);Robert Costanza (Topic Editor) (2010-05-26). "Biophysical economics". In Cutler J. Cleveland. Encyclopedia of Earth. Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment. Retrieved 2011-04-21. 

External links[edit]