DAMA/NaI

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The DAMA/NaI experiment[1][2] investigated the presence of dark matter particles in the galactic halo by exploiting the model-independent annual modulation signature. As a consequence of its orbit, the Earth should be exposed to a higher flux of dark matter particles around June 2, when its rotational velocity is added to the one of the solar system with respect to the galaxy and to a smaller one around December 2, when the two velocities are subtracted. The annual modulation signature is distinctive since the effect induced by dark matter particles must simultaneously satisfy many requirements.

Description[edit]

The experimental set-up was located deep underground in the Laboratori Nazionali del Gran Sasso in Italy. DAMA/NaI has been replaced by the new generation experiment, DAMA/LIBRA. These experiments are carried out by Italian and Chinese researchers.

The experimental set-up was made by nine 9.70 kg low-radioactivity scintillating thallium-doped sodium iodide (NaI(Tl)) crystals. Each crystal was faced by two low-background photomultipliers through 10 cm light guides. The detectors were installed inside a sealed copper box flushed with highly pure nitrogen in order to insulate the detectors from air that contains trace amounts of radon, a radioactive gas. To reduce the natural environmental background the copper box is enclosed inside a multicomponent multi-ton passive shield made of copper, lead, polyethylene/paraffin, cadmium foil. A plexiglas box encloses the whole shield and is also kept in a highly pure nitrogen atmosphere. A 1 m concrete neutron moderator largely surrounds the set-up.

Results[edit]

The DAMA/NaI set-up observed the annual modulation signature over 7 annual cycles. The presence of a model independent positive evidence in the data of DAMA/NaI was first reported by the DAMA collaboration in fall 1997 and published beginning of 1998.[3] The final paper with the full results was published in 2003[1] after the end of experiment in July 2002. Various corollary investigations have also been and are continuing.[4][5][6][7][8][9][10][11][12][13]

The model-independent evidence is compatible with a wide set of scenarios regarding the nature of the dark matter candidate and related astrophysical, nuclear and particle physics (for example [14][15][16][17][18][19][20][21]).

A careful quantitative investigation of possible sources of systematic and side reactions has been regularly carried out and published at the time of each data release.[22] No systematic effect or side reaction able to account for the observed modulation amplitude and to simultaneously satisfy all the requirements of the signature has been found.

The experiment has also obtained and published many results on other processes and/or approaches.

Skepticism[edit]

Results from the XENON Dark Matter Search Experiment seem to contradict DAMA/Nal's results.[23]

See also[edit]

References[edit]

  1. ^ a b R. Bernabei et al. (2003). "Dark Matter search". Rivista del Nuovo Cimento 26 (1): 1. arXiv:astro-ph/0307403. Bibcode:2003NCimR..26a...1B. 
  2. ^ R. Bernabei et al. (1999). "Performances of the about 100 kg NaI(Tl) set-up of the DAMA experiment at Gran Sasso". Rivista del Nuovo Cimento A 112 (6): 545. 
  3. ^ R. Bernabei et al. (1998). "Searching for WIMPs by the annual modulation signature". Physics Letters B 424: 195. Bibcode:1998PhLB..424..195B. doi:10.1016/S0370-2693(98)00172-5. 
  4. ^ R. Bernabei et al. (2001). "Investigating the DAMA annual modulation data in a mixed coupling framework". Physics Letters B 509: 197. Bibcode:2001PhLB..509..197B. doi:10.1016/S0370-2693(01)00493-2. 
  5. ^ R. Bernabei et al. (2002). "Investigating the DAMA annual modulation data in the framework of inelastic dark matter". European Physical Journal C 23: 61. Bibcode:2002EPJC...23...61B. doi:10.1007/s100520100854. 
  6. ^ P. Belli et al. (2002). "Effect of the galactic halo modeling on the DAMA-NaI annual modulation result: An extended analysis of the data for weakly interacting massive particles with a purely spin-independent coupling". Physical Review D 66: 043503. arXiv:hep-ph/0203242. Bibcode:2002PhRvD..66d3503B. doi:10.1103/PhysRevD.66.043503. 
  7. ^ R. Bernabei et al. (2004). "Dark Matter particles in the galactic halo: results and implications from DAMA/NaI". International Journal of Modern Physics D 13: 2127. arXiv:astro-ph/0501412. Bibcode:2004IJMPD..13.2127B. doi:10.1142/S0218271804006619. 
  8. ^ R. Bernabei et al. (2006). "Investigating pseudoscalar and scalar dark matter". International Journal of Modern Physics A 21 (7): 1445. arXiv:astro-ph/0511262. Bibcode:2006IJMPA..21.1445B. doi:10.1142/S0217751X06030874. 
  9. ^ R. Bernabei et al. (2004). "Investigating halo substructures with annual modulation signature". European Physical Journal C 47: 263. arXiv:astro-ph/0604303. Bibcode:2006EPJC...47..263B. doi:10.1140/epjc/s2006-02559-9. 
  10. ^ R. Bernabei et al. (2007). "On electromagnetic contributions in WIMP quests". International Journal of Modern Physics A 22 (19): 3155. arXiv:0706.1421. Bibcode:2007IJMPA..22.3155B. doi:10.1142/S0217751X07037093. 
  11. ^ R. Bernabei et al. (2008). "Investigating electron interacting dark matter". Physical Review D 77: 023506. arXiv:0706.1421. Bibcode:2008PhRvD..77b3506B. doi:10.1103/PhysRevD.77.023506. 
  12. ^ R. Bernabei et al. (2008). "Possible implications of the channeling effect in NaI(Tl) crystals". European Physical Journal C 53: 205. arXiv:0710.0288. Bibcode:2008EPJC...53..205B. doi:10.1140/epjc/s10052-007-0479-0. 
  13. ^ R. Bernabei et al. (2008). "Investigation on light dark matter". Modern Physics Letters A 23 (26): 2125. arXiv:0802.4336. Bibcode:2008MPLA...23.2125B. doi:10.1142/S0217732308027473. 
  14. ^ A. Bottino et al. (2003). "Light Relic Neutralinos". Physical Review D 67: 063519. arXiv:hep-ph/0212379. Bibcode:2003PhRvD..67f3519B. doi:10.1103/PhysRevD.67.063519. 
  15. ^ A. Bottino et al. (2003). "Lower Bound on the Neutralino Mass from New Data on CMB and Implications for Relic Neutralinos". Physical Review D 68: 043506. arXiv:hep-ph/0304080. Bibcode:2003PhRvD..68d3506B. doi:10.1103/PhysRevD.68.043506. 
  16. ^ A. Bottino et al. (2004). "Light Neutralinos and WIMP direct searches". Physical Review D 69: 037302. arXiv:hep-ph/0307303. Bibcode:2004PhRvD..69c7302B. doi:10.1103/PhysRevD.69.037302. 
  17. ^ D.T. Smith, N. Weiner (2005). "The Status of Inelastic Dark Matter". Physical Review D 72 (6): 063509. arXiv:hep-ph/0402065. Bibcode:2005PhRvD..72f3509T. doi:10.1103/PhysRevD.72.063509. 
  18. ^ R. Foot (2004). "Reconciling the positive DAMA annual modulation signal with the negative results of the CDMS II experiment". Modern Physics Letters A 19 (24): 1841. arXiv:astro-ph/0405362. Bibcode:2004MPLA...19.1841F. doi:10.1142/S0217732304015051. 
  19. ^ S. Mitra (2005). "Has Dama Detected Self-Interacting Dark Matter?". Physical Review D 71 (12): 121302. arXiv:astro-ph/0409121. Bibcode:2005PhRvD..71l1302M. doi:10.1103/PhysRevD.71.121302. 
  20. ^ K.M. Belotsky, T. Damour, M. Yu. Khlopov (2002). "Implications of a solar-system population of massive 4th generation neutrinos for underground searches of monochromatic neutrino-annihilation signals". Physics Letters B 529: 10. arXiv:astro-ph/0201314. Bibcode:2002PhLB..529...10B. doi:10.1016/S0370-2693(02)01234-0. 
  21. ^ K. Belotsky, D. Fargion, M. Khlopov, R.V. Konoplich (2008). "May Heavy neutrinos solve underground and cosmic ray puzzles?". Physics of Atomic Nuclei 71: 147. arXiv:hep-ph/0411093. Bibcode:2008PAN....71..147B. doi:10.1007/s11450-008-1016-9. 
  22. ^ R. Bernabei et al. (2000). "On the investigation of possible systematics in WIMP annual modulation search". European Physical Journal C 18: 283. Bibcode:2000EPJC...18..283B. doi:10.1007/s100520000540. 
  23. ^ Matson, John (6 May 2011). "WIMP Wars: Astronomers and Physicists Remain Skeptical of Long-Standing Dark Matter Claim". Scientific American. Retrieved 12 April 2011. 

External links[edit]