RNA Helicase A

From Wikipedia, the free encyclopedia
  (Redirected from DHX9)
Jump to: navigation, search
DEAH (Asp-Glu-Ala-His) box helicase 9
Protein DHX9 PDB 1uil.png
PDB rendering based on 1uil.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols DHX9 ; DDX9; LKP; NDH2; NDHII; RHA
External IDs OMIM603115 MGI108177 HomoloGene1039 GeneCards: DHX9 Gene
EC number
RNA expression pattern
PBB GE DHX9 202420 s at tn.png
PBB GE DHX9 212105 s at tn.png
PBB GE DHX9 212107 s at tn.png
More reference expression data
Species Human Mouse
Entrez 1660 13211
Ensembl ENSG00000135829 ENSMUSG00000042699
UniProt Q08211 O70133
RefSeq (mRNA) NM_001357 NM_007842
RefSeq (protein) NP_001348 NP_031868
Location (UCSC) Chr 1:
182.81 – 182.86 Mb
Chr 1:
153.46 – 153.49 Mb
PubMed search [1] [2]

ATP-dependent RNA helicase A (RHA; also known as DHX9, LKP, NDHII, and Maleless) is an enzyme that in humans is encoded by the DHX9 gene.[1][2][3]

DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein with RNA helicase activity. It may participate in melting of DNA:RNA hybrids, such as those that occur during transcription, and may play a role in X-linked gene expression. It contains 2 copies of a double-stranded RNA-binding domain, a DEXH core domain and an RGG box. The RNA-binding domains and RGG box influence and regulate RNA helicase activity.[3]


DHX9 has been shown to interact with KHDRBS1,[4] AKAP8L,[5][6] NXF1,[7] RELA,[8] MIZF,[9] SMN1,[10] PRMT1,[11] BRCA1.,[12][13] DDX5 (p68) and DDX17 (p72)[14]


  1. ^ Lee CG, Hurwitz J (September 1993). "Human RNA helicase A is homologous to the maleless protein of Drosophila". J Biol Chem 268 (22): 16822–30. PMID 8344961. 
  2. ^ Zhang S, Grosse F (May 1997). "Domain structure of human nuclear DNA helicase II (RNA helicase A)". J Biol Chem 272 (17): 11487–94. doi:10.1074/jbc.272.17.11487. PMID 9111062. 
  3. ^ a b "Entrez Gene: DHX9 DEAH (Asp-Glu-Ala-His) box polypeptide 9". 
  4. ^ Reddy, T R; Tang H; Xu W; Wong-Staal F (July 2000). "Sam68, RNA helicase A and Tap cooperate in the post-transcriptional regulation of human immunodeficiency virus and type D retroviral mRNA". Oncogene (ENGLAND) 19 (32): 3570–5. doi:10.1038/sj.onc.1203676. ISSN 0950-9232. PMID 10951562. 
  5. ^ Yang, J P; Tang H; Reddy T R; Wong-Staal F (August 2001). "Mapping the functional domains of HAP95, a protein that binds RNA helicase A and activates the constitutive transport element of type D retroviruses". J. Biol. Chem. (United States) 276 (33): 30694–700. doi:10.1074/jbc.M102809200. ISSN 0021-9258. PMID 11402034. 
  6. ^ Westberg, C; Yang J P; Tang H; Reddy T R; Wong-Staal F (July 2000). "A novel shuttle protein binds to RNA helicase A and activates the retroviral constitutive transport element". J. Biol. Chem. (UNITED STATES) 275 (28): 21396–401. doi:10.1074/jbc.M909887199. ISSN 0021-9258. PMID 10748171. 
  7. ^ Tang, H; Wong-Staal F (October 2000). "Specific interaction between RNA helicase A and Tap, two cellular proteins that bind to the constitutive transport element of type D retrovirus". J. Biol. Chem. (UNITED STATES) 275 (42): 32694–700. doi:10.1074/jbc.M003933200. ISSN 0021-9258. PMID 10924507. 
  8. ^ Tetsuka, Toshifumi; Uranishi Hiroaki, Sanda Takaomi, Asamitsu Kaori, Yang Jiang-Ping, Wong-Staal Flossie, Okamoto Takashi (September 2004). "RNA helicase A interacts with nuclear factor kappaB p65 and functions as a transcriptional coactivator". Eur. J. Biochem. (Germany) 271 (18): 3741–51. doi:10.1111/j.1432-1033.2004.04314.x. ISSN 0014-2956. PMID 15355351. 
  9. ^ Fujita, Hidetoshi; Fujii Ryouji; Aratani Satoko; Amano Tetsuya; Fukamizu Akiyoshi; Nakajima Toshihiro (April 2003). "Antithetic effects of MBD2a on gene regulation". Mol. Cell. Biol. (United States) 23 (8): 2645–57. doi:10.1128/MCB.23.8.2645-2657.2003. ISSN 0270-7306. PMC 152551. PMID 12665568. 
  10. ^ Pellizzoni, L; Charroux B; Rappsilber J; Mann M; Dreyfuss G (January 2001). "A functional interaction between the survival motor neuron complex and RNA polymerase II". J. Cell Biol. (United States) 152 (1): 75–85. doi:10.1083/jcb.152.1.75. ISSN 0021-9525. PMC 2193649. PMID 11149922. 
  11. ^ Smith, Wendell A; Schurter Brandon T, Wong-Staal Flossie, David Michael (May 2004). "Arginine methylation of RNA helicase a determines its subcellular localization". J. Biol. Chem. (United States) 279 (22): 22795–8. doi:10.1074/jbc.C300512200. ISSN 0021-9258. PMID 15084609. 
  12. ^ Schlegel, Brian P; Starita Lea M; Parvin Jeffrey D (February 2003). "Overexpression of a protein fragment of RNA helicase A causes inhibition of endogenous BRCA1 function and defects in ploidy and cytokinesis in mammary epithelial cells". Oncogene (England) 22 (7): 983–91. doi:10.1038/sj.onc.1206195. ISSN 0950-9232. PMID 12592385. 
  13. ^ Anderson, S F; Schlegel B P; Nakajima T; Wolpin E S; Parvin J D (July 1998). "BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A". Nat. Genet. (UNITED STATES) 19 (3): 254–6. doi:10.1038/930. ISSN 1061-4036. PMID 9662397. 
  14. ^ Wilson, Brian J; Giguere V (November 2007). "Identification of novel pathway partners of p68 and p72 RNA helicases through Oncomine meta-analysis". BMC Genomics (England) 8: 419. doi:10.1186/1471-2164-8-419. PMID 18005418. 

Further reading[edit]