Daniel Goldston

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Daniel Goldston
Daniel Goldston.jpg
Born (1954-01-04) January 4, 1954 (age 61)
Oakland, California
Nationality American
Fields Mathematics
Institutions San Jose State University
Alma mater UC Berkeley
Notable awards Cole Prize (2014)

Daniel Alan Goldston (born January 4, 1954 in Oakland, California) is an American mathematician who specializes in number theory. He is currently a professor of mathematics at San Jose State University.

Goldston is best known for the following result that he, János Pintz, and Cem Yıldırım proved in 2005:[1]

\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log p_n}=0

where p_n\ denotes the nth prime number. In other words, for every c>0\ , there exist infinitely many pairs of consecutive primes p_n\ and p_{n+1}\ which are closer to each other than the average distance between consecutive primes by a factor of c\ , i.e., p_{n+1}-p_n<c\log p_n\ .

This result was originally reported in 2003 by Goldston and Yıldırım but was later retracted.[2][3] Then Pintz joined the team and they completed the proof in 2005.

In fact, if they assume the Elliott–Halberstam conjecture, then they can also show that primes within 16 of each other occur infinitely often, which is related to the twin prime conjecture.

See also[edit]


External links[edit]